
Topic: Classes and Object Oriented Programming
Goals: By the end of this topic, we will discuss…
- Attributes and Methods
- Object Oriented Programming
- Inheritance
Acknowledgements: These class notes build on the content of my previous courses as well as the work of R.
Jordan Crouser, and Jeffrey S. Castrucci.

From the Archives...

The first Smith College campus computer
appeared in 1967.

(see picture to right)

From: Nanci A. Young, College Archivist

Recall: 4 Elements of a System
Same in 1967 as now... 

input

storage

processing
(computation)

output

!

"

#

$

Recall: Lists/Dictionaries
In the following example, we created a list of dictionaries (called library to store our books) and
passed it into each function.
def addBook(library):
 # Initialize an empty Book
 book = {}

 # Populate with user input
 book["title"] = input("Book title: ")
 book["author"] = input("author: ")

 # Append book to library
 library.append(book)

def printBooks(library):
 counter = 0
 for book in library:
 counter += 1
 print(str(counter) + ". '" + book["title"] + "' by",
 book["author"])

def removeBook(library, index):
 print("Removing book #" + str(index) +"...", end = "")
 library.pop(index - 1)

def main():
 library = []
 ... #calling code here.

This feels odd to always be passing library.... is there a better way??

Discussion: Compare this with other operations we can perform on lists and dictionaries; what
do you notice?
animals.append('guinea pig')
vowels.insert(3, 'o')
animals.remove('rabbit')
pets.count('dog')

Recall: Playlist (from Lab 5)
- We’d like to be able to ask a Book to print() or read() itself.
- That way we don’t have to waste time passing everything from function to function.
- To do this, we’ll need a way to combine functions (methods) and variables (attributes).
Solution: Classes... you will do this week and in Lab 7. 

Part 1: Functions Vs. Methods & Attributes
A function returns a value, but a procedure does not.
A method is similar to a function, but is internal to part of a class. The term method is used
almost exclusively in object-oriented programming.

Put another way....
Functions (in general) are things that are done BY a program TO an object.
Methods (in general) are things that are done BY an OBJECT TO or ABOUT itself.

Examples:
• describe what someone is wearing (function)
• tell me what’s in someone’s pocket (method)
• make a circle around someone (function)
• move someone’s chair somewhere else in the room (method)
• get someone to sing the ABC’s (method)
• class: put yourselves in order from tallest to shortest (could be either!)

Discussion: Can you come up with other things that are probably better as methods than
functions?

Are you starting to get a sense for an object’s “personal space”?

Good guidelines for understanding Methods:
- If it’s something an object could reasonably do for itself, it should.
- If it changes anything about the object.
- Methods belong to the object, and they can access everything inside the object.
- When that thing needs to be done, you call the method.

Building a Die class
def main():
 d6 = Die(6)
 d8 = Die(8)

 d6.roll()
 print("Value of d6:",
 d6.getValue())

 d8.roll()
 print("Value of d8:",
 d8.getValue())
By default, python doesn't know how to do this.
1. a way to build a Die given # sides
2. to be able to .roll() them
3. to be able to .getValue()

Blueprint (Class) for a Die

Die Class

libraries
from random import randrange

a class for a die
class Die:
 def __init__(self, n): # def __init__(self):
 self.num_sides = n
 self.value = 1

 def roll(self):
 self.value = randrange(1, self.num_sides + 1)

 def getValue(self):
 return self.value

- Classes are defined using class.
- Start class names with a capital letter.

- All classes need a constructor.
- Python constructors are always called __init__
- Attribute values get initialized here.

- Methods are defined inside the class and indented.
- Self:

- When attached to a variable, self makes the variable a "member" of the object.
- Every method in a class automatically gets passed a reference to the object as its first

parameter. (Python specialty. 😉)
- BUT We don't put the self reference into any of the method calls.

Part 2: Object-Oriented Programming

Imperative (“procedural”) programming:
Program is structured as a set of steps (functions and code
blocks) that flow sequentially to complete a task

Object-oriented programming (“OOP”) :
Program is structured as a set of objects (with attributes and
methods) that group together data and actions

Discussion: What do you think the pros and cons are for each?

Programming Paradigms

object-oriented functional imperative declarative

Review the Die Class:
libraries
from random import randrange

a class for a die
class Die:
 def __init__(self, n):
 self.num_sides = n
 self.current_value = 1

 def roll(self):
 self.current_value = randrange(1, self.num_sides + 1)

 def getValue(self):
 return self.current_value
Identify the constructor, attributes, methods...

What happens if we run this program?

Nothing! We can in instantiate it...creating objects.
Each die object has different attributes.
d6 = Die(6) # Calling the Constructor -> six sided die
d8 = Die(8) # Calling the Constructor -> eight sided die

Accessing Attributes
Question: Why do we have this method? Why don't we access the attribute directly?
 def getValue(self):
 return self.current_value

DO NOT DO...
print(d6.current_value) # RUDE: access Song's
attributes directly
d6.current_value = 2 # WORSE: change it without
permission

Think back to our ATM example...
Can you imagine any attributes/methods you might want to be private?

print(account.pin)

public vs. private
• python methods/attributes are public by default

• this means that they can be accessed from outside the instance… by anyone
(for better or for worse)

• To make a method/attribute private (i.e. accessible only within the instance itself),
• prefix it with a double underscore (_ _)

def __init__(self, n_sides):
 self.__num_sides = n_sides
 self.__current_value = 1

Big takeaways
• Object-oriented programming is a powerful paradigm
• It’s also very common (and therefore useful to learn)
• The more complex your problem, the more it makes sense to organize your code this way
• In Python, it isn’t all or nothing: some parts of your program might be object-oriented, others

might be procedural
• The important part is that your code makes sense

Cash Register Example Con't

class CashRegister:
 def __init__(self, ones, twos, fives, tens, twenties):
 ...

 def add(self, count, denomination):
 self.cash[denomination] = self.cash[denomination] + count

Activity: Now write delete?
 def remove(self, count, denomination):
 self.cash[denomination] = self.cash[denomination] - count

OR
 def remove(self, count, denomination):
 self.add(-count,denomination)

Printing Objects
Have you tried to print an object... you get something like:
<__main__.CashRegister object at 0x10f0342b0>

Not terribly helpful. But, we can override this result by introducing our own response to the
print command. Remember, print() must be passed strings, so what we really need to do is
give beaker a way to present itself as a string.

We will used the double underscores to indicate we are overriding the default string response
when it is applied to our object.

Inside the class definition, we write:
 def __str__(self):
 """Print cash register contents"""
 return "The cash register holds: " \
 + "\n20's: " + str(self.cash["twenties"]) \
 + "\n10's: " + str(self.cash["tens"]) \
 + "\n5's: " + str(self.cash["fives"]) \
 + "\n2's: " + str(self.cash["twos"]) \
 + "\n1's: " + str(self.cash["ones"])

register = CashRegister(4, 2, 4, 5, 5)
print(register)

Now:
>>> register = CashRegister(4, 2, 4, 5, 5)
The cash register holds:
20's: 5
10's: 5
5's: 4
2's: 2
1's: 4

That’s better! All we have done is renamed the method. When we call print(obj), then
obj.__str__() is called to find out what string to print.

Getters
How can we make accessing properties easier? We can create getter methods.

By creating getter methods at the same time we create attributes, we make it easier to modify
the program later by just changing the getter function, instead of each instance of an attribute
call.

Good programming practice to name all your getter methods with the same structure:
def get_attribute(self):
 return self.attribute location

The question came up last class as to why we would use getter methods.

We noted how accessing an object property deep within a complex data structure like a
database (or that is a composite of several object attributes) is much easier with a getter.

This is an example for accessing properties of a cash register object:
 def get_fives(self):
 return self.fives

An additional reason that we have introduced getters is because in other programming
languages you use, object attributes are not as easily accessed, so you may encounter getter
structures in other programming languages in the future.
They are a very standard part of object oriented programming.

Also, Setters -> like getters only they set the value of an attribute.

Encapsulation (Definition)
The core of object-oriented programming (OOP) is the organization of the program by
encapsulating related data and functions together in an object.

To encapsulate something means to enclose it in some kind of container. In programming,
encapsulation means keeping data and the code that uses it in one place and hiding the
details of exactly how they work together. For example, each instance of class file keeps track
of what file on the disk it is reading or writing and where it currently is in that file. The class
hides the details of how this is done so that programmers can use it without needing to know
the details of how it was implemented.

Activity: Write a Dog Class
Write a class called Dog, with a constructor that takes in the following
parameters:

name (the dog’s name)
age (the dog’s age in years)

Write a method called 'bark', where the dog says something. 

Dog

Part 3: Inheritance
In object-oriented programming, inheritance is the mechanism of basing an object or class
upon another object (prototype-based inheritance) or class (class-based inheritance), retaining
similar implementation. [Wikipedia]

class Dog:
 # A class attribute (every Dog has the same value).
 species = "CANINE"

 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("Woof! I am a", Dog.species)

class Dachshund(Dog):
 def runLowToGround(self):
 print("I'm runnin' so lowwwww...")

class GreatDane(Dog):
 def leapOver(self, something):
 print("I'm leaping over", something)
Subclasses "inherit" all the attributes and methods from their parent class.
They can also have their own attributes and methods separate from their parent.

If necessary, they can "override" attributes and methods from their parent.
class RobotDog(Dog):
 species = "ROBOT"
 def bark(self):
 print("Woof! I am a", RobotDog.species)

Discussion
Why is this "inheritance" idea useful?

Let's practice what abstraction...what are the common property of all dogs, people, items.

Pick two items, try to come up with common properties between them. 

Dog

Dachshund
GreatDane

IS A IS A

Inheritance vs. Composition
In object-oriented programming, composition means that an instance variable is an object of
another class.

class Collar:
 def __init__(self, color):
 self.color = color
 def getColor(self):
 return self.color

class Dog:
 def __init__(self, name, age, collar:Collar):
 self.name = name
 self.age = age
 self.collar = collar

 def bark(self):
 print("Woof! My collar is:", self.collar.getColor())

my_collar = Collar("red")
my_dog = Dog("Baxter", 2, my_collar)
my_dog.bark()

When working with classes make yourself a diagram with your "is a" and "has a" relationships.

[https://www.w3resource.com/java-tutorial/inheritance-composition-relationship.php]

Dog

GreatDane

HAS A

IS ACollar

https://www.w3resource.com/java-tutorial/inheritance-composition-relationship.php

Review: Inheritance (point.py)
import math
class Point:
 def __init__ (self, x, y):
 self.x = x
 self.y = y
 self.numPoint = 2

 def sum_squares (self, otherPoint):
 return (self.x - otherPoint.getX())**2 +
 (self.y - otherPoint.getY())**2

 def distance_to (self, otherPoint):
 # using distance formula: sqrt((x2-x1)^2 + (y2-y1)^2)
 return math.sqrt(self.sum_squares(otherPoint))

 def __str__ (self):
 return "({},{})".format(self.x, self.y)
 def getNumPoint(self):
 return self.numPoint
 def getX (self):
 return self.x
 def getY (self):
 return self.y

class Point3D (Point):
 def __init__ (self, x, y, z):
 super().__init__(x,y) #Always call super first!
 self.z = z
 self.numPoint = 3

 def sum_squares (self, otherPoint3D):
 return super().sum_squares(otherPoint3D) +
 (self.z - otherPoint3D.getZ())**2

 def __str__ (self):
 return "({},{},{})".format(self.x, self.y, self.z)
 def getZ (self):
 return self.z

p1 = Point(0,0)
p2 = Point(4,4)
d = p1.distance_to(p2)
print("distance from", p1, "to", p2, "=", d)
print("NP2:", p1.getNumPoint())

p3 = Point3D(0,0,0)
p4 = Point3D(4,4,4)
d = p3.distance_to(p4)
print("distance from", p3, "to", p4, "=", d)
print("NP3:", p3.getNumPoint())

Assert
Assert allow you to establish that a condition must be True at a point in the code. Python will
produce an error if the assertion is False.

p1 = Point(0,0)
p2 = Point(4,4)
d = p1.distance_to(p2)
print("distance from", p1, "to", p2, "=", d)
print("NP2:", p1.getNumPoint())

distance should be 4*sqrt(2) = 5.66
assert round(d,2) == 5.66

p3 = Point3D(0,0,0)
p4 = Point3D(4,4,4)
d = p3.distance_to(p4)
print("distance from", p3, "to", p4, "=", d)
print("NP3:", p3.getNumPoint())

distance should be sqrt(4^2 + 4^2 + 4^2) = sqrt(48) = 6.93
assert round(d,2) == 6.93
print("Everything is working!")

