
Topic: Files Reading/Writing and Exceptions
Goals: By the end of this topic, we will…
- discuss storing and retrieving information in file
- exceptions
Acknowledgements: These class notes build on the content of my previous courses as well as the work of R.
Jordan Crouser, and Jeffrey S. Castrucci.

Working with files

- Containers of bits, organized into bytes
- Could represent text, images, music, movies, programs, applications, list of files (folders)…

but underneath, they’re all the same: 0s and 1s
- We’ll start by playing with text files

Reading a text file
- In order to bring data stored in a text file into a Python program, we need to read it:
def main():
 # Open file for reading
 file = open("test.txt", "r") #"r" for read

 # Read the file and print its contents
 text = file.read()
 print(text)

 # Close the files
 file.close()

main()

- "r" stands for READ-MODE
- before you can read something from a file you need to open it first
- once opened file is an object

- the .read() method that returns a string
- the .readlines() method that returns a list of strings
- the .readline() method that returns a single line of the file as a string

- after you .read(), .readline() or .readlines() a file you need to .close() it 

Key points for reading files
- Three-step process:
- .open()
- .read() or .readlines()
- .close()

- All three steps, always in that order
- If you want to .read() a file multiple times, you have to repeat the whole process
 file = open("test.txt", "r")
 text1 = file.read()
 text1 = file.read() # EMPTY!
 file.close()

Exercise: Reading and Writing Files
Write a program that:
- reads the file horizontal.txt (from course website)
- print it to the console

Writing data to a text file
- The process looks very similar when we want to write data to a file:
def main():
 # Open file for reading
 file = open("test2.txt", "w") #"w" for write

 # Write a string to the file
 text = "Output this string into a file..."
 file.write(text)

 # Close the files
 file.close()

main()

- exactly the same function to .open() a file
- "w" stands for WRITE-MODE
- before you can write something from a file you need to open it first

- if the file does not exist, Python will create it (e.g. test2.txt)
- if the file does exist, Python will overwrite it

- once opened file is an object
- the .write() method that takes in a string

- after you .write() to a file you need to .close() it
Note:
- if you want to add to an existing file instead of overwriting it,

- "a" stands for APPEND-MODE 

Key points for writing files
- Three-step process:
- .open()
- .write()
- .close()

- Unlike .read(), you can .write() to an .open() file as many times as you want
(appending each time)

- If you want a new line, you have to add it yourself! (\n)
 file = open("test2.txt", "w")
 file.write("Hello")
 file.write("there!")
 file.close()

Exercise: Reading and Writing Files
Write a program that:
- reads the file horizontal.txt (from course website)
- breaks it into individual words
- and writes the words to a new file vertical.txt, each one on its own line

Handling Exceptions
>>> print(x)
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 print(x)
NameError: name 'x' is not defined
Recall:
- This is an Exception
- The kind of error gives you a club about what the problem is...
- It also tells you where the problem is.

The drawbacks to using exceptions is that the program stops and crashes.

Example: What happens if the user enters a negative number?
import math
def main():
 x = int(input("Enter a number greater than 0: "))
 print("The log is:", math.log(x))

if __name__ == "__main__":
 main()

Possible work around:
import math
def main():
 x = int(input("Enter a number greater than 0: "))
 if x > 0:
 print("The log is:", math.log(x))
 else:
 print(x, "is out of range, sorry. Try again.")
but...what happens if the user enters a string?

The try...except block
- There are some cases where avoiding an Exception isn’t possible
- In this case, we want tell Python:

- what we want to happen
- how to handle it if things go wrong

For example:
import math
def main():

 try:
 x = int(input("Enter a number greater than 0: "))
 print("The log is:", math.log(x))

 except ValueError:
 print("Not a valid input.")

- Even if you can’t avoid all errors, you can design your program to fail gracefully
- You can handle multiple different kinds of Exceptions, and you can handle them differently
- Think about edge cases to provide specific feedback about what went wrong

