
Types of Errors

Syntax Errors
The compiler or interpreter can only read a program if the program is syntactically correct;
otherwise, the process fails and returns an error message. Syntax refers to the structure of a
program and the rules about that structure.

For example, in English, a sentence must begin with a capital letter and end with a period. You
could also think of these as spelling errors.

>>> 3) + 2 * 4  
SyntaxError: invalid syntax

>>> 12 = x  
SyntaxError: can't assign to literal

Exceptions (Runtime and Semantic Errors)
Next, we look at errors that produce an exception. They may result from improper use of the
statements or variables. In this case the syntax of the programming language is correct but the
problem could result from the use of wrong variables, wrong operations or in the wrong order.
These errors may also result from applying an operator not intended for the variable type,
calling a function with the wrong number of arguments or with arguments of the wrong type,
etc. These errors are exceptions because they usually indicate that something exceptional
(and bad) has happened, and usually begin with Traceback.

>>> 89.4 / 0  
Traceback (most recent call last):  
 File "", line 1, in  
 89.4 / 0  
ZeroDivisionError: float division by zero

Logical errors
A logical error is when the wrong output is produced due to a miscalculation or
misunderstanding of the requirements. These type of errors are generally the most difficult to
fix because the code will execute without crashing. There are no error messages produced.
Identifying logical errors can be tricky because it requires you to work backward by looking at
the output of the program and trying to figure out what it is doing. Another method of
debugging logical errors is to step through the program one instruction at a time to figure out
where things go wrong.

>>> fahrenheit = 71.6
>>> celsius = fahrenheit - 32 * 5/9
>>> celsius
53.822222222222216

The above example is missing brackets, should be:
celsius = (fahrenheit – 32) * 5/9

Some more examples of logical errors are:
• using the wrong variable name
• indentation
• using integer division instead of floating-point division
• getting operator precedence wrong

As we go through the different topics of basic programming we will highlight some of the
common mistakes made by beginners, for now just try to understand the definitions.

Testing Repeatedly
You should test your code as you write it. The reason is that the more you write the more
likely it is that you will make a mistake. If you have not been testing and fixing your code along
the way, at some point it will become analogous to finding a needle in a haystack.

Readability and Comments
Making it obvious what is happening in your code is a good thing.
Writing code is as much a communication exercise as it is a calculation exercise.

Readability
Much like we use spaces in the English language to separate words in a sentence to make
them easier to read, so too, we should use spaces to separate our operators. For example:
>>> -100-25*3%4
>>> 3+2+1-5+4%2-1/4+6

Would be a lot easier to read if we included spaces.
>>> -100 – 25 * 3 % 4
>>> 3 + 2 + 1 - 5 + 4 % 2 – 1 / 4 + 6

For ambiguous operations it would be helpful to include parentheses to remove any doubts.
>>> -100 – (25 * 3) % 4
>>> 3 + 2 + 1 - 5 + (4 % 2) – (1 / 4) + 6

It is better to have more spaces and lines if it makes your code easier to read.

The Why and How of Comments
As your programs get longer and more complicated, some additional English explanation can
be used to help you and other programmers read your code. These explanations
called comments document your code (much the way docstrings document your functions –
more on that later).

A comment begins with the number sign character (#) and goes until the end of the line. One
name for this character is the hash character. Python ignores any lines that start with this
character.
Comments are intended for programmers to read, and are usually there to explain the purpose
of a function, as well as to describe relationships between your variables. Comments are to
help you, and anyone else who is reading/using your code, to remember or understand the
purpose of a given variable or function in a program.

Example:
fahrenheit = 212
celsius = (fahrenheit - 32) * 5 / 9 # Convert degrees
Fahrenheit to Celsius.

calculate the area of a triangle
base = 20  
height = 12
area = base * height / 2

The Programming Process

D. Thiebaut, Computer Science, Smith College

The Programming Process

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

iterate
many times

Refine the

