LIFE SKILL:
PROGRAMMING &

DEBUGGING

CSC111: Introduction to CS through Programming

Slides from R. Jordan Crouser and Dominique Thiebaut
Smith College

The programming process

Q‘.‘, D. Thiebaut, Computer Science, Smith College
A Y

The programming process (idealized)

« Analyze the @

Q‘.‘, D. Thiebaut, Computer Science, Smith College
A Y

R
The programming process (idealized)

* Analyze the

* Determine Specifications

Q‘." D. Thiebaut, Computer Science, Smith College
A Y

R
The programming process (idealized)

* Analyze the
* Determine Specifications

* Create a Design

Q‘.‘, D. Thiebaut, Computer Science, Smith College
A Y

R
The programming process (idealized)

Analyze the

Determine Specifications

Create a Design

Implement

Q‘." D. Thiebaut, Computer Science, Smith College
A Y

The programming process (idealized)

Analyze the

Determine Specifications

Create a Design .

Implement

Test & Debug

Q‘.‘, D. Thiebaut, Computer Science, Smith College
A Y

The programming process (more realistic)

* Analyze the

* Determine Specifications

Kefine the
* Createa Design R

* Implement

* TJest & Debug

Q‘.‘, D. Thiebaut, Computer Science, Smith College
A Y

Getting started

Q‘." D. Thiebaut, Computer Science, Smith College
A Y

“S*”: start small | slow | simple

Q;‘." D. Thiebaut, Computer Science, Smith College

Next: address the constraints

Q‘." D. Thiebaut, Computer Science, Smith College
A Y

Add additional features

Q‘." D. Thiebaut, Computer Science, Smith College
A Y

-
Finally: hit target

Q‘." D. Thiebaut, Computer Science, Smith College
A Y

RECAP: the programming process

* Analyze the

* Determine Specifications
Kefine the

* Createa Design ’

* Implement

* TJest & Debug

Q‘.‘, D. Thiebaut, Computer Science, Smith College
A Y

R
.. Fun history: the term “debug”

14
0 SW O Atan :;{‘M*}_J {/-17::0 7032 g3y 0L5
/000 , < - onhon S G087 ¥YC 95 <cavuh
: E(J 200 ~ o
13" v, (032 MP -me zﬁ%/%) 7615725055 (-2
033y Pro » 2. 3oyq6Yis /
Cons b 2030625

"k%s e-L ~~ 033 ./a.J:l “1"""/ xT.uJ? Jeod

JRRRA = s

.‘»I:V\e: ‘cxPlcl- (S!lhe "——"\c&.k)
: \dder Teot

LIl T 7 <
R el
R s

et lachhal e a1 found
e /50 L.—J"';V-" stands]. ‘f 1 m‘ F]
1200 | clerd Jowm .

RDML Grace M. Hopper -/‘
b.1906 — d.1992

Some problems are obvious

this is called
an Exception

O ® Python 3.6.5 Shell

print(x)
Traceback (most recent call last):
File "<pyshell#0>", 1ine 1, in <module>
print(x)
NameError: name 'x' is not defined
>>>

Ln: 11 Col: 4

e
Some problems are obvious

(x)

NameError: name 'x' 1is not defined

\ the kind of error gives you

a clue about what the problem is

e
Some problems are obvious

it also tells you where the problem is
(but be careful!)

(x)

line 1

Ln: 11 Col: 4

Common Exceptions

NameError: raised when Python can't find the thing
you're referring to (a variable or a function)

[NON | Python 3.6.5 Shell

print(x)
Traceback (most recent call last):
File "<pyshell#0>", 1ine 1, in <module>
print(x)
NameError: name 'x' is not defined
>>>
Ln: 11 Col: 4

Common Exceptions

TypeError: raised when you try to perform an operation
on an object that’s not the right type (i.e. a string

instead of a number)

[NON) Python 3.6.5 Shell

>>> 3 + "X
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>

3 + lell
TypeError: unsupported operand type(s) for +: 'int'
and 'str'

Ln: 50 Col: 4

Common Exceptions

IndexError: raised when you try to use an index that's
out of bounds

® O Python 3.6.5 Shell

>> x = ["a", "b", "c"]
>>> print(x[3])
Traceback (most recent call last):
File "<pyshell#35>", line 1, in <module>
print(x[3])
IndexError: list index out of range
Ln: 86 Col: 4

Common Exceptions

SyntaxError: raised when you try to run a command
that isn’t a valid Python statement

O © *Python 3.6.5 Shell*

>>> printChello my name jordan)
SyntaxError: invalid syntax

>>>

Ln: 11 Col: 4

Common Exceptions

SyntaxError: also raised if your indentation is messed
up (this is a special kind of SyntaxError called an
IndentationError)

| NN Python 3.6.5 Shell
>>> (x == 3):
print(x)
print("Done!™)

SyntaxError: unexpected indent

>>>
Ln: 16 Col: 4

Common Exceptions

ZeroDivisionError: raised when you try to divide by
zero (or do modular arithmetic with zero)

® ©o Python 3.6.5 Shell
>>> X = 0
>>Yy =3/ X

Traceback (most recent call last):
File "<pyshell#32>", line 1, in <module>
y=3/X
ZeroDivisionError: division by zero

Ln: 75 Col: 4

Common Exceptions

FileNotFoundError: raised when Python can't find the
thing you're referring to (a file)

[NON Python 3.6.5 Shell
>>> file = open("unicorn.txt", "r")
Traceback (most recent call last):
File "<pyshell#33>", line 1, in <module>

file = open("unicorn.txt", "r")
FileNotFoundError: [Errno 2] No such file or direct
ory: 'unicorn.txt’

Ln: 80 Col: 4

e
Common Exceptions

UnicodeDecodeError: raised when you try to read a
file that has weird characters in it (most common culprit:
apostrophe vs. the single quote)

| NON | Python 3.6.5 Shell
>>> file = open("alice.txt", "r")
>>> file.read()

Traceback (most recent call last):

File "<pyshell#30>", line 1, in <module>

file.read()

File "/Library/Frameworks/Python. framework/Versio
ns/3.6/1ib/python3.6/encodings/ascii.py", line 26,
1n decode

return codecs.ascii_decode(input, self.errors)[
0]
UnicodeDecodeError: 'ascii' codec can't decode byte
@xe2 in position 219: ordinal not in range(128)

R
Less common Exceptions

Did your program throw an Exception not listed here?

Look it up at:
https://docs.python.org/3/library/exceptions.html

R
Exceptions = relatively easy to fix

Why would | say that?

What's the alternative?

-
Logical errors

Mistakes in the reasoning behind the code (though the
statements are valid and there are no Exceptions), e.g.

[NN *Untitled*

x = ["A", "B", "C"]

choice = input("Enter A, B, or, C: ™)
choice == x:
print("Okay!")

print("Invalid choice.")

Ln: 6 Col: 28

: perfectly valid

(just not what we wanted)

Logical errors

Mistakes in the reasoning behind the code (though the
statements are valid and there are no Exceptions), e.g.

X=[. :]
choice = ()
choice X:
C)
C)

what we were
actually going for

An analogy
Syntactic Error Logical Error
Their is no If an animal is
reason to be green, it must
concerned. be a frog.

o
Discussion

How do you find and fix logical errors?

e
Step 1: map out the code

It is impossible to debug code that you don’t understand
(and it's possible to not understand code even if you wrote it!)

It's often helpful to map out how the code fits together:

[main ()]

—>[printGoodbye ()]

—>[printHello()]

Step 2: “rubber ducking”

Still stuck? Try explaining it to someone else
(or historically, to a rubber duckie)

This is the debugging equivalent of pair programming

“Okay, so first we
are going to round () the
user’s input and then
...oh wait...
| think maybe the problem is
that | forgot to eval () the
input first, so it’s
still a string!

e
Step 3: add print () statements

Not sure exactly where things are going wrong
(esp. inside a loop)?

Add print () statements to leave a “trail” on the console

® O *Untitled*
numbers = [1,2,3,4,5]
total = 0
n numbers:
total + n

print(total)

Ln: 6 Col: 12

N
Takeaways

This is a really quick crash course in basic debugging

There are lots of other techniques for both dealing with
and preventing bugs, but for now this will suffice

The most important part is to understand:
what the code is trying to do
what the code is actually doing

Tips:
change one thing at a time
keep track of what you change!

Demo

I
Your task

@® @ connectFour-broken.py - /Usersfjcrouser/Google Drive/Teaching/Course Material/CSC111/CSC11 1/labs-old/connectFour-broken.py (3.6.5)

H

Names: <YOUR NAMES HERE>
Filename: connectFour-broken.py
Date: <TODAY'S DATE HERE>

Description: This file contains a broken version
of Jordan's ConnectFour game.

There are 5 SYNTACTIC ERRORS (mistakes
that are not correct Python statements
and so cause the program to throw
Exceptions) as well as 5 LOGICAL ERRORS
(mistakes that are technically correct
Python statements, but which cause the
program not to behave the way we want).

Your job 1s to find (and correct!) each
of these mistakes using your new
DEBUGGING TECHNIQUES.

HHFHRAHRFTHRFPRIFHRHRRHHRHRH:ER

H:

Ln: 15 Col: 54
N

o
Discussion

What did you find?

