
LIFE SKILL:
PROGRAMMING &
DEBUGGING
CSC111: Introduction to CS through Programming

Slides from R. Jordan Crouser and Dominique Thiebaut

Smith College

The programming process

D. Thiebaut, Computer Science, Smith College

The Programming Process

The programming process (idealized)

D. Thiebaut, Computer Science, Smith College

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

The Programming Process

The programming process (idealized)

D. Thiebaut, Computer Science, Smith College

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

The Programming Process

The programming process (idealized)

D. Thiebaut, Computer Science, Smith College

The Programming Process

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

The programming process (idealized)

D. Thiebaut, Computer Science, Smith College

The Programming Process

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

The programming process (idealized)

D. Thiebaut, Computer Science, Smith College

The Programming Process

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

The programming process (more realistic)

D. Thiebaut, Computer Science, Smith College

The Programming Process

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

iterate
many times

Refine the

Getting started

D. Thiebaut, Computer Science, Smith College

The Programming Process

“S4”: start small | slow | simple

D. Thiebaut, Computer Science, Smith College

The Programming Process

Next: address the constraints

D. Thiebaut, Computer Science, Smith College

The Programming Process

Add additional features

D. Thiebaut, Computer Science, Smith College

The Programming Process

Finally: hit target

D. Thiebaut, Computer Science, Smith College

The Programming Process

RECAP: the programming process

D. Thiebaut, Computer Science, Smith College

The Programming Process

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

iterate
many times

Refine the

Fun history: the term “debug”

RDML Grace M. Hopper
b.1906 – d.1992

Some problems are obvious

this is called
an Exception

Some problems are obvious

the kind of error gives you
a clue about what the problem is

Some problems are obvious

it also tells you where the problem is
(but be careful!)

Common Exceptions

• NameError: raised when Python can’t find the thing
you’re referring to (a variable or a function)

Common Exceptions

• TypeError: raised when you try to perform an operation
on an object that’s not the right type (i.e. a string
instead of a number)

Common Exceptions

• IndexError: raised when you try to use an index that’s
out of bounds

Common Exceptions

• SyntaxError: raised when you try to run a command
that isn’t a valid Python statement

Common Exceptions

• SyntaxError: also raised if your indentation is messed
up (this is a special kind of SyntaxError called an
IndentationError)

Common Exceptions

• ZeroDivisionError: raised when you try to divide by
zero (or do modular arithmetic with zero)

Common Exceptions

• FileNotFoundError: raised when Python can’t find the
thing you’re referring to (a file)

Common Exceptions

• UnicodeDecodeError: raised when you try to read a
file that has weird characters in it (most common culprit:
apostrophe vs. the single quote)

Less common Exceptions

Did your program throw an Exception not listed here?

Look it up at:
https://docs.python.org/3/library/exceptions.html

Exceptions = relatively easy to fix

Why would I say that?

What’s the alternative?

Logical errors

• Mistakes in the reasoning behind the code (though the
statements are valid and there are no Exceptions), e.g.

perfectly valid
(just not what we wanted)

Logical errors

• Mistakes in the reasoning behind the code (though the
statements are valid and there are no Exceptions), e.g.

what we were
actually going for

An analogy

Syntactic Error

Their is no
reason to be
concerned.

Logical Error

If an animal is
green, it must

be a frog.

Discussion

How do you find and fix logical errors?

Step 1: map out the code

• It is impossible to debug code that you don’t understand
(and it’s possible to not understand code even if you wrote it!)

• It’s often helpful to map out how the code fits together:

main()

printHello()

printGoodbye()

Step 2: “rubber ducking”

• Still stuck? Try explaining it to someone else

(or historically, to a rubber duckie)

• This is the debugging equivalent of pair programming

“Okay, so first we

are going to round() the

user’s input and then

...oh wait…

I think maybe the problem is

that I forgot to eval() the

input first, so it’s

still a string!

Step 3: add print() statements

• Not sure exactly where things are going wrong
(esp. inside a loop)?

• Add print() statements to leave a “trail” on the console

Takeaways

• This is a really quick crash course in basic debugging

• There are lots of other techniques for both dealing with
and preventing bugs, but for now this will suffice

• The most important part is to understand:
- what the code is trying to do
- what the code is actually doing

• Tips:
- change one thing at a time
- keep track of what you change!

Demo

Your task

Discussion

What did you find?

