
Topic 4: Loops, Random
Goals: By the end of this topic, we will discuss…
- loops (for, while, range), discover the properties of a loop
- random and pseudorandom numbers
- components of good documentation
Acknowledgements: These class notes build on the content of my previous courses as well as the work of R.
Jordan Crouser, and Jeffrey S. Castrucci.

Loops
Goal: simplify the description of repeated blocks of code (i.e. make it shorter/easier to
understand by highlighting what’s being repeated and for how long).

We will start by looking at loops generally before looking at Python.

Examples: 
Bake at 350 F until done.
Iterate over all the vowels.
99 bottles of beer on the wall....
This is a song that never ends...
While light is red, stop at light.

While my program has a syntax error, fix
code.
For each dirty dish, wash dishes.
Counting times tables. 

Group exercise:
1. Come up with all the different ways you could use a loop?
2. What are common properties? Compare and contrast these different kinds of loops.

2020 Answers:
Come up with all the different ways you could use a loop?
-
-
-
-

What are common properties? Compare and contrast these different kinds of loops.
-
-
-
-

Loops in Python
Three approaches:
- run for each item in a list (for)
- run a specific number of times (for)
- run until some condition is met (while)

While Loops
- In addition to definite loops, we may sometimes want the loop to continue until something
happens
- In Python we can do this with a while loop, which is paired with a conditional (True/False)
statement. For example:
x = 0
while (x < 10):
 x = x + 1

- while loops can be especially useful when combined with the input() function
For example, we may want to continue asking for input until the user tells us they are done:
Ask for initial input
phrase = input("Phrase (STOP to end):")

while (phrase != "STOP"):
 print("ECHO:", phrase)
 phrase = input("Phrase (STOP to end):")

[https://www.cs.cmu.edu/~mrmiller/
15-110/Handouts/while-4.pdf]

https://www.cs.cmu.edu/~mrmiller/15-110/Handouts/while-4.pdf
https://www.cs.cmu.edu/~mrmiller/15-110/Handouts/while-4.pdf
https://www.cs.cmu.edu/~mrmiller/15-110/Handouts/while-4.pdf
https://www.cs.cmu.edu/~mrmiller/15-110/Handouts/while-4.pdf
https://www.cs.cmu.edu/~mrmiller/15-110/Handouts/while-4.pdf
https://www.cs.cmu.edu/~mrmiller/15-110/Handouts/while-4.pdf

Looping over a List
In Python, we use the keywords for and in to loop through a list.

- Loop over an exact set of items.
We can think of this in terms of where the variable letter is pointing:
for letter in ["A", "B", "C"]:
 print(letter)
We could accomplish the same thing by writing it out as three separate assignments.
More on this when we talk about lists.

Looping over a Range
- The range() function lets us generate lists of integers
- Given one integer a, range(a) will generate a list starting at 0 and going up to (but not
including) a.
For example, if we want a loop to run 5 times:
for i in range(5):
 # do something

- Given two integers a,b, range(a,b) will generate a list starting at a and going up to (but
not including) b
For example, if we want to loop over the integers from 1 to 5:
for i in range(1,6):
 # do something

- These values can be positive or negative (but for now, the second integer should be larger
than the first)
For example, if we want to loop over the integers from -5 to 5:
for i in range(-5,5):
 # do something

- Given three integers a,b,c, calling range(a,b,c) will generate a list starting at a and
going up to (but not including) b with step size c
For example, if we want the integers from 0 to 9, counting by 3s:
for i in range(0,10,3):
 # do something

- If we want to count down instead of up, we can set b < a and use a negative step size
For example, if we want to count down from 10 to 1:
for i in range(10,0,-1):
 # do something

Exercise: convert °𝐹 to °𝐶 now with loops.
Use a for loop and the range() function to generate a conversion table of temperatures from °𝐹
to °𝐶 ranging from 100°𝐹 to −30°𝐹 in increments of 10°𝐹.
This is the previous program we wrote:
 farh = eval(input("Enter the temperature in F: "))
 cel = (farh - 32) * 5//9
 print(farh, " F is ", cel, " C!")
Tips: "{0:.1f}".format(c) will round to 1 decimal place

random() -> Random and Pseudorandom Numbers

What does it mean for something to be random?

Expectation #1: even distribution
- Every value has an equal chance of being chosen
- Example: if we roll a die several times, we expect to see:

1 roughly 1/6 of the time
2 roughly 1/6 of the time
3 roughly 1/6 of the time, etc.

On average (over a large number of samples) the distribution is roughly uniform.

Question: Is an even distribution enough?
What if the die always rolled like this?

Expectation #2: unpredictable
- Randomness is more than ensuring that every value has an equal chance of being chosen
- We also want each value to be hard to predict
- Specifically: seeing several values in the series (“rolls”) shouldn’t help us guess the next one

Question: Why do we care? Why do we want a random number?  

Pseudorandom numbers -> “random enough"

Question: How could a deterministic machine generate a (seemingly) random value?
We will skip the details in this class.

The random module.
- Python’s built-in random number generator (RNG) can be accessed through the random
module.
- This module contains several useful functions, all of which are documented here:

https://docs.python.org/3/library/random.html
- This always returns a float with a value in [0.0, 1)
- The simplest way to get a random number is by calling the .random() function:
import random
x = random.random()

Activity: Coin Flip

1. Use the .random() function from the random module
to write a program that prints HEADS 50% of the
time and TAILS the remaining 50% of the time. Try
10 coin flips.

2. Instead consider 1,000,000 coin flips. Add up (sum)
the number of times it is heads and tails.

Question: What if we wanted a random float in a different range?  

random floats in other ranges
- Just use math!
- Example: imagine a homework assignment is scored out of 100 points (partial points allowed,
and you get 10 points for writing your name)
import random
[10.0, 100.0)
score = 10.0 + random.random() * 90.0

Generating a random integer
- We could multiply, add and call int(...) to get a random integer using .random(), but
there’s no need!
- The .randint(...) function takes two arguments min and max, returns an integer in [min,
max] (inclusive):
import random
roll = random.randint(1,6)

Different than how we have been specifying ranges.... 😏

Generating a random choice
- We might want to choose an item from a list....there’s a function for that!
- The .choice(...) function takes in a list, and returns a randomly selected element:
import random
flavor = ["strawberry", "chocolate", "vanilla"]
ice_cream = random.choice(flavor)
print("Today, I will have", ice_cream, "ice cream!")

ERROR: The .choice(...) function only works when given a list-like object. If you forget the
square brackets, you will get a TypeError.

Question: What happens if we call .choice(...) on a string?
- Remember strings are lists of characters...
- .choice(...) chooses between characters
import random
random.choice("ABCDE")
returns A, B, C, D, E

Testing Programs that Use Random
- It can be really challenging to test a program that behaves differently every time you run it.
- In order to solve this, we can tell python precisely how to generate its (not-so-random-
anymore) random numbers using a parameter called a seed.
import random
random.seed(123) # put an integer here.
for i in range(10):
 print(random.random())

Side Notes: Importing Multiple Modules
import random
import math
random_number = random.random()*100
print(math.sqrt(random_number))

- So far, we’ve always imported modules using import <module>
- But, two different modules may have functions of the same name.
- This causes a “name clashes” (i.e. if two functions have the same name, the second one

overwrites the first)
- Instead import only the function you need:
from random import random
from math import sqrt
random_number = random()*100
print(sqrt(random_number))
- This is useful if we only need specific functions and we want to save ourselves some typing
- We can use * to import everything from a module :
from random import *
from math import sqrt
random_number = random()*100
print(sqrt(random_number))
- Again, just be cautious of name clashes…

While Loop Handout
Using a while loop, write a short code snippet to complete each task.

A. Count the number of vowels in a given string.

B. Output only the vowels included in a given string.

C. Add up all the numbers from 1 to 10.

D. Count down from 100 by 7.

E. Loop until the user enters 'q' for quit.

F. Output the times table from 1 to 12 (in a grid). 

Loop (and Range) Handout
Using a for/while loop, write a short code snippet to complete each task.

G. Count the number of vowels in a given string.

H. Output only the vowels included in a given string.

I. Add up all the numbers from 1 to 10.

J. Count down from 100 by 7.

K. Loop until the user enters 'q' for quit.

L. Output the times table from 1 to 12 (in a grid). 

