
Support for User Generated
Evolutions of Goal Models

Boyue Caroline Hu
Department of Computer Science

University of Toronto, Toronto, Canada
boyue.hu@mail.utoronto.ca

Alicia M. Grubb
Department of Computer Science

Smith College, Northampton, MA, USA
amgrubb@smith.edu

Abstract—Goal models are used in early phase requirements
engineering to elicit stakeholders’ intentions, analyze dependen-
cies, and help stakeholders make trade-off decisions about the
project and its interaction with the environment. The Evolving
Intentions framework extended goal model analysis to evaluate
how models change over time, by creating simulation paths
showing possible evolutions of the model. More recently, we
extended this analysis to allow users to explore states along the
path and generate their own simulation paths. However, this
approach is limited by users ability to comprehend the state
space, which grows exponentially with the size of the model.
In this paper, we explore using filters to reduce the number of
viewable solutions enabling users to create their own simulation
results. We present our approach and initial validation, including
an analysis of prior models and a review of expert feedback.

I. INTRODUCTION

Goal-Oriented Requirements Engineering has been advo-
cated to help stakeholders make trade-off decisions at an early
stage. Goal models illustrate intentions, system requirements
and constraints to help stakeholders understand and evaluate
potential project scenarios and facilitate early decision mak-
ing [1][2].

The Evolving Intentions framework allows stakeholders to
specify changes in their intentions and the project domain
over time and ask questions about a project’s evolution [3].
BloomingLeaf is a web-based tool that implements the Evolv-
ing Intentions framework and provides formal automated anal-
ysis of goal models [4]. BloomingLeaf uses the satisfaction
values and evolutionary functions assigned to the intentions in
the model, and produces a simulation path to show how the
fulfillment of each intention in the model changes over time.

A single simulation path might not be sufficient to under-
stand the domain. Stakeholders may want to create their own
paths that are different than the automatically generated one, in
order to gain more insights about the evolution of the project.
Thus, we added additional functionality to BloomingLeaf that
allows users to navigate to a state in the simulation path and
find all possible next states in the path [5]. As the model
becomes bigger, the state space of this problem (i.e., number
of possible next states) grows exponentially in the worst case.
Presenting all next states to users makes it difficult for them to
review and customize their simulation path. This problem of
choice selection has already been well studied by researchers
in psychology [6][7], where they found that unlike computers,

humans are less effective at making choices as the number
of options increases. The aim of this research project is to
improve the usability of our user generated simulation path
feature by reducing the number of next states presented to
users at each step.

We propose using filters to reduce the number of solutions
for each next state in the path. Due to the nature of goal models
as well as the fulfillment data involved in choosing a next
path, selecting appropriate filters is a nontrivial task. In this
paper, we present our approach to filtering next state results.
Using a student applying to graduate school as a motivating
example, we present an overview of the problem of choosing
a next state within the context of simulation in the Evolving
Intentions framework. We present our proposed filters based
on the metrics in the goal modeling literature [8]. We evaluate
the effectiveness of these filters using eight models from the
literature and review our implementation with experts.

The remainder of this paper is organized as follows. Sec-
tion II introduces our motivating example, and relevant back-
ground from the Evolving Intentions framework and Bloomin-
gLeaf. Section III describes our extension to BloomingLeaf
and demonstrates how it can be used on the motivating exam-
ple. Section IV presents our validation of the effectiveness of
our filters on several goal models as well as an evaluation by
experts. We compare our work with other analysis techniques
in Section V and conclude in Section VI.

II. BACKGROUND

In this section, we introduce goal modeling and the Evolving
Intentions framework using our motivating example.

Graduate School Application (GRAD). Consider an under-
graduate student interested in graduate school. The student
wants to make sure he satisfies all the requirements and
doesn’t miss any opportunities. He needs to consider the
order of satisfying tasks (i.e., fulfilling requirements). One
key decision in this process is in which order should these
tasks be completed. For example, should Do Research Work be
completed before or after Internship. Figure 1 shows the partial
goal model of this decision, consisting of the intentions of the
Student and his Recommenders (i.e., actors). These intentions
(i.e., goals, tasks, and soft goals) are connected by contribution
links and decomposition links (see legend in Figure 1). The
Student’s root-goal Be Admitted to Graduate School is and

1



Fig. 1: GRAD Model: A goal model of a student’s graduate
school application.

decomposed into the goals Complete Undergraduate and Have
Successful Application, meaning that Be Admitted to Graduate
School is satisfied only if both Complete Undergraduate and
Have Successful Application are satisfied. Have Successful
Application is then and decomposed by tasks Finish Statement
of Purpose, Complete GRE, and Submit Recommendation
Letters, meaning that all three must be fulfilled to satisfy Have
Successful Application. All of the other links in Figure 1 are
contribution links (see [9] for a full list of contribution types).
The + [resp. ++] link propagates some [resp. full] evidence
from the source to the target intention. The ++S link means
that only positive evidence is propagated to the target intention.

Evidence Pairs. When evaluating a goal model, we assign
evidence pairs (s, d) labels to intentions, where s ∈ {F,P,⊥}
is the evidence for (i.e., satisfaction) and d ∈ {F,P,⊥} is
the evidence against (i.e., denial) the fulfillment of an inten-
tion [9]. F [resp. P] means there is full [resp. partial] evidence
for or against the fulfillment of an intention, and ⊥ represents
null evidence. For example, in Figure 1, Complete Courses
and Complete GRE have been assigned (⊥,F), meaning there
is full evidence against their fulfillment.

An intention can be assigned one of nine possible evidence
pairs, by taking the product of the sets s and d, resulting
in the following partial order from most satisfied to most
denied: (F,⊥); (P,⊥), (F,P); (⊥,⊥), (P,P), (F,F); (⊥,P),
(P,F); and (⊥,F). Evidence pairs can be assigned by the
modeler or as a result of propagation-based analysis from
another intention (via the links discussed above). See [10] for
a full set of propagation rules used in the Evolving Intentions
framework.

Evolving Intentions. As introduced in Section I, the Evolving
Intentions framework allows the fulfillment of intentions,
specified with evidence pairs, to change over time. We define

four functions to describe how the fulfillment of an intention
changes over a single time interval: CONSTANT, INCREASE,
DECREASE, and STOCHASTIC [10]. For example, in the
GRAD model the Complete Courses task is assigned an
INCREASE function (visually represented by the I on Complete
Courses in Figure 1). With an initial value of (⊥,F), this
means that over time, there will be increased evidence for
and decreased evidence against the fulfillment of Complete
Courses, along the partial oder of evidence pairs. In the GRAD
example, Complete GRE also changes over time, and we define
it over two intervals. In the first interval Complete GRE has
a CONSTANT function with the value (⊥,F), and then in the
second interval Complete GRE has a CONSTANT function with
the value (F,⊥). This pattern, known as DENIED-SATISFIED
in the framework, is primarily used to model tasks that will
be completed in the future. When these evolving functions are
combined with other goal model information, we can simulate
possible evolutions of the goal model.

BloomingLeaf Analysis. BloomingLeaf is a web-based tool
for modeling and analyzing goal models [4]. Stakeholders first
create a goal model and add appropriate evolving functions
before completing any analysis. The Analysis View, shown
in Figure 2a, lists two different types of analysis: Simulate
Single Path and Explore Possible Next States.

Simulate Single Path presents the user with one possible
evolution of their model over a pre-specified number of time
points. For example, the screenshot in Figure 2a shows a
single result of Simulate Single Path for the GRAD model
at time point seven. The full solution contains eleven time
points and the user can switch between time points using the
slider below the model. Figure 2b illustrates other portions of
this simulation path by showing the intention evaluations of
four tasks over three time points: 5, 8, 11.

This simulation result also illustrates the evolving functions
we introduced above. Recall that Complete GRE was initially
denied (⊥,F) (see Figure 1) and as a result of the DENIED-
SATISFIED function it is satisfied (F,⊥) at time point five
(see Figure 2b). Complete Courses was assigned an INCREASE
function with an initial value of denied (⊥,F) (see Figure 1).
In Figure 2b, we see the evaluation of Complete Courses
become more fulfilled; as it is partially satisfied (P,⊥) at time
point five and then satisfied (F,⊥) at time point eight.

Overall, the simulation illustrated in Figure 2 gives the
result that the student can satisfy Have Successful Application
by satisfying (F,⊥) Complete Courses and Do Research
Work at time point eight and then satisfying (F,⊥) Internship
at time point eleven (see Figure 2b). However, the student
wants to further explore the question: “What would happen
if he completes an internship next (by satisfying Internship),
rather than doing research?” The Explore Possible Next States
analysis, allows users to step into any time point in the single
path solution and visualize all the possible next states. For
example, when the student clicks Explore Possible Next States
from time point seven (as in Figure 2a), the Next States pop-up
window is invoked displaying the first possible next state with

2



(a) Screenshot of BloomingLeaf’s Analysis view showing a result of Simulate Single Path
for the GRAD model at time point seven.

Time Step: 5

Time Step: 8

Time Step: 11

(b) Selected tasks at time
points 5, 8, and 11.

Fig. 2: Simulate Single Path result for the GRAD example.

an indicator at the top displaying that there are 18776 possible
states for the next time point. We exclude this initial pop-up for
space considerations, but it looks similar to Figure 3a where
we have already applied our filters.

In BloomingLeaf, both Simulate Single Path1 and Explore
Possible Next States are encoded as a constraint satisfaction
problem (CSP). As the size of the model grows the state
space grows exponentially2 (i.e., state explosion problem [11]).
While actual runtimes for Simulate Single Path have been
shown to be appropriate [3], when we return the entire state
space for a single time point (as in Explore Possible Next
States), this presents a significant burden to the user as the
number of returned states grows. Our work aims to improve
the interpretation of these results for users.

III. EXTENSION OVERVIEW

As introduced in Section II, we allow users to create their
own simulation paths by exploring all possible next states
iteratively through the solution space. This creates an increased
cognitive burden on users as the size of the model grows.
We assist users in selecting next states by introducing two
approaches to reducing the number of next states shown to
the users in BloomingLeaf: domain reduction and filtering
solutions.

Domain Reduction. First, we look at adding additional
constraints to the CSP (i.e., domain reduction). We reduce

1Simulate Single Path is the implementation of Simulation over All Evolving
Intentions in [10].

2The state space can be reduced by addition additional evolving functions
and relationships.

the domain of each Explore Possible Next States search by
allowing users to filter out conflicting and null evidence values.
As described in Section II there are nine possible evidence
pairs and of these four are conflicting values: (F,P), (P,P),
(F,F), and (P,F). Prior work and BloomingLeaf allows users
to prevent Strong, Medium, and Weak conflict values when
using Simulate Single Path [4] [9]. We adapt conflict avoidance
as a filter to be applied to the Explore Possible Next States
feature. This means stakeholders can find all the next states
that do not contain any conflicting evidence pairs. Similarly,
we allow users to filter out null evidence values (⊥,⊥) or
None.

In Figure 2a of the GRAD example, the student is exploring
the next state from time point seven. Notice that the original
simulation had Strong as the Conflict Prevention Level, meaning
that the student does not want to include the strong conflict
values, i.e. (F,F), in the single path. In Section IV, we
demonstrate how these filters reduce computation time for next
state results.

Solution Reduction. Second, we introduce solution filters to
exclude possible states reducing the number of total next states
shown to the user. CSP solvers treat all valid states equally. For
example, a state with all the intentions fulfilled and another
state with no intentions fulfilled differ in context to users
but are not distinguished by the solver. Stakeholders have
the contextual information to favour some states over others
making user generated simulations more realistic. Based on the
research on goal model metrics [12], we define five filters over
the solution and list them in Table I. Most filters are based on

3



TABLE I: List of filters used in the Next States analysis.

Domain Reduction Filters
Name Description Example Usage
Remove Con-
flict Values

Remove all solutions that contain conflict values for
any of the intentions: (F,P), (P,P), (F,F), and (P,F).

If the user is looking for absolute satisfaction or denial of
the intentions in the model, Remove Conflict Values will
eliminate all solutions that present evidence of both.

Remove No
Information

Remove all solutions that contain the (⊥,⊥) evidence
pair.

It the user want some evidence for or against each intention,
where no information would not help in the decision.

Solution Reduction Filters
Name Description Example Usage
Least/Most
Tasks
Satisfied

Keep only the solutions with the least/most number of
tasks with the evaluation label satisfied (F,⊥).

In the GRAD example, if the student is looking for the
minimum number of tasks he needs to complete to be
admitted to graduate school.

Least/Most
Goals
Satisfied

Keep only the solutions with the least/most number of
goals with the evaluation label satisfied (F,⊥).

This would be useful for the student in the GRAD example
to view the worst case and best case scenario.

Least/Most
Resources
Satisfied

Keep only the solutions with the least/most number of
resources with the evaluation label satisfied (F,⊥).

Consider a business person making budgets of all the
resources he needs, Least Resources Needed would give a
lower bound estimation and Most Resources Needed would
give an upper bound.

Least/Most
Actors
Involved

Keep only the solutions with the least/most number of
actors involved. An actor is involved when at least one
of their intentions is satisfied.

In the GRAD example, if the student were to ask whether
he can finish the entire application process all by himself.

Satisfaction of
the Most Con-
strained Goal

Keep only the solutions with the status of the most con-
strained goal being satisfied. Most constrained goals
are goals with the smallest domain in the model.

This usually helps when users want to explore the satisfia-
bility of some or all goals in the model.

an attribute, allowing for the maximization or minimizations
of the characteristic. For example, the first row of Solution
Reduction Filters in Table I lists Least/Most Tasks Satisfied.
Most Tasks Satisfied displays any permutation of states where
the maximum number of tasks are satisfied. In the GRAD
example (see Figure 2a), the most number of tasks that can
be satisfied in the next state is 3 so all states with 3 tasks
satisfied will be shown. These filters reduce the number of
solutions shown to users helping them to pick a next state.
In Section IV, we demonstrate to what degree the number of
states is reduced by applying each of these filters.

Implementation in BloomingLeaf. In BloomingLeaf, once
the user has selected Explore Possible Next States and are
viewing the Next States pop-up window (see Figure 3a), they
can complete the following actions:
• Browse through all next states. Users can switch between

states by selecting the indices at the top of the left panel
or by entering a desired state number and clicking Go.

• Applying a filter by clicking on the check box next to the
filter name. For example, in Figure 3a Most Goal Satisfied
has been applied.

• The Save button records the selected state and generates
the remainder of the path in the original analysis window.

• The Explore Next States button records the selected state
and then in the same window generates all states for the
following time point. This allows users to incrementally
generate next states until they have completed the path.

Demonstration of Filters on the GRAD example. As we
introduced in Section II, the student, in the GRAD example,
is exploring the question: “Should Do Research Work or

Internship be satisfied first?”
Instead of continuing to generate new random paths, the

student decides to pick a next state himself to customize this
path. Using BloomingLeaf, the student selected time point
seven (see Figure 2a), where Internship and Do Research Work
were partially satisfied (P,⊥), and clicked Explore Possible
Next States. This resulted in over 10000 states for the next
time point, which is unrealistic to review. Thus, the student
applies filters to make this task more manageable (as shown
in Figure 3a). He first applies Remove conflict and Remove
(⊥,⊥) to find a state without any conflicting or no information
values, reducing the number of states to 512. He then selects
Most Goals Satisfied to find the states where some of his goals
are satisfied. This results in 32 states, as shown in Figure 3a.
He reviews some of the 32 states and selects one where
Internship is fulfilled and Do Research Work is not. Using
this new state for time point eight, the student generates
the remainder of the path, where Be Admitted to Graduate
School is eventually satisfied. The student realizes that both
options are valid and decides to complete an internship before
completing research.

To illustrate selecting a next state, fragments of some
alternative next states are demonstrated in Figure 3b. Do
Research Work would still be satisfied before Internship if
Alternative 1 is selected. Alternative 2 and 3 do not indicate
any order of the two tasks being satisfied. As a result, all three
alternatives are not the desired next state in this example.

IV. VALIDATION

In this section, we describe our initial validation of our
extension and explore three research questions: (RQ1) To what

4



(a) Screenshot of the Next States pop-up window in BloomingLeaf, showing
the GRAD model on the centre canvas with three filters selected.

Alternative 1

Alternative 2

Alternative 3

(b) Alternative Next States for
Time Point 8

Fig. 3: Demonstration of Next State analysis in BloomingLeaf with filters.

extent does the filters approach reduce computation time and
the number of returned states? (RQ2) To what extent do users
find this approach helpful? (RQ3) How does using filters affect
users’ interpretation time? We define computation time as
the time required for our CSP solver to find a solution, and
interpretation time as the amount of time it takes for a user to
interpret the results of the Explore Possible Next States and
choose a next state. To explore these research questions, we
analyze effectiveness by measuring the changes in runtimes
and reductions in the number of solutions presented to users,
and we analyze usability by gathering expert opinions on the
approach.

Effectiveness Evaluation. As shown in the GRAD example,
the number of states returned to the student was significantly
reduced from over 10,000 to 32 states by applying the filters.
To ensure that these results were not unique to the GRAD
example, we investigate RQ1, how each filter reduces the
number of returned states and computation time. We selected
eight models from the goal modeling literature of varying
sizes (i.e., number of intentions and links). For each model,
we added evolving functions, if required, and used Simulate
Single Path (with ten relative time points). We then selected
time point four and used Explore Possible Next States. Table II
lists the results of our analysis with each column representing
a single model. The first two rows list attributes of the model.
The middle block lists the initial number of returned states
for selecting Explore Possible Next States at time point four
and the number of solutions returned after applying each filter
independently. For example, the GRAD model is shown in
the first column of Table II. We can see that by selecting

Remove All Conflict Values as the option it reduce the number
of returned states from 711 to 64.

Based on the results in Table II, without preferences most
models resulted in hundreds of states and applying filters
resulted in a reduction of the number of states return to the
user. We examined the cases where filters did not reduce the
number of states and found that the contents of the model
caused these anomalies. For example, in the GRAD model
Least/Most Resources Needed did not impact the number of
states because there is no resources in the GRAD model. Also,
Remove All Conflict Values resulted in zero states in the Bike
Lanes Full and the Spadina Plan models because there were
intentions connected by both a helps link and a hurts link,
resulting in conflict.

The bottom section of Table II lists the computation times
for Explore Possible Next States with and without removing
conflict or none values. For example, the computation time
of the Scheduler model was reduce from 317 ms to 187
ms [resp. 173 ms] by removing conflict [resp. none] values.
We were not able to collect runtime data from all models
because removing all conflict or none values resulted in an
over-constrained model with no valid solution. We conclude
that the applicability of each filter varied based on the model
structure, but overall applying domain reduction filters reduce
the computation time of the Explore Possible Next States
analysis, and applying solution reduction filters reduced the
number of returned states, answering RQ1.

Expert Analysis. Ideally, we would investigate RQ2 and RQ3
in the context of a controlled experiment with a significant
number of participants. Since our implementation is still a

5



TABLE II: Results of the Effectiveness Study: Measurements of the computation times, and the number of solutions shown
to users, as the result of applying each of our proposed filters over eight selected models, of varying sizes.

Model Name G
R

A
D

B
LE

[1
0]

W
M

E
[1

0]

Sc
he

du
le

r
[1

3]
Sp

ad
in

a
Pl

an
Sp

ad
in

a
O

pp

Sp
ad

in
a

Pr
o

B
ik

e
La

ne
s

Fu
ll

Num. Intentions 14 8 20 18 43 38 28 30
Num. Links 18 7 16 20 55 35 31 37
Measurement Number of Solutions
Explore Possible Next States - No Pref. 771 486 3882 6369 20 5832 36 51152
Remove All Conflict Values 64 110 30 1173 0 200 8 0
Remove No None 512 0 3056 4093 16 4608 32 45056
Most tasks satisfied 32 486 96 288 20 972 36 51152
Least tasks satisfied 66 486 264 105 20 1944 36 51152
Most actors involved 514 468 3456 504 20 3888 18 51152
Least actors involved 257 18 426 105 20 1944 3 51152
Most resources needed 771 486 3882 4536 20 5832 36 51152
Least resources needed 771 486 3882 1833 20 5832 36 51152
Most goals satisfied 192 2 3882 504 10 24 36 68
Least goals satisfied 195 352 3882 713 10 3072 36 3448
Satisfaction of the most constrained goal 771 486 3882 6369 0 5832 36 51152
Measurement Computation Time in milliseconds
Explore Possible Next States - No Pref. 131 119 286 317 88 388 96 4141
Remove All Conflict Values 121 47 N/A 187 N/A N/A 92 N/A
Remove No None 97 N/A 226 173 86 N/A 89 1444

N/A indicates that no measurement was collected because the model was over-constrained.

“proof of concept” any results would be greatly confounded
by our interface. Instead, we walked experts through a mock
trial of our study treatment to get feedback about our extension
and implementation. We solicited expert feedback of graduate
students and professors at the University of Toronto through
the Software Engineering group mailing list. We defined
an expert as someone who has conducted research in goal
modeling or formal reasoning techniques. Five experts volun-
teered to review our tool and technique and we interviewed
them individually. We gave each expert the GRAD model
and asked them to answer the question: “For this student to
be successfully admitted to graduate school, in which order
should the five tasks be completed?” After generating a path
and selecting Explore Possible Next States, we asked them
to select a next state without and then with filters. We timed
how long it took them to find an answer and asked them to
comment on where they spent the most time.

The experts took between two and six minutes to complete
this task and selected between three and six filters. Anecdo-
tally, most of the experts time was spent on deciding which
filters to apply. Two of the experts commented that the names
of the filters were not self-explanatory so it was not clear
which filters would help solve the problem. All experts agreed
that the initial number of states returned was too many to
consider. One indicated that it would be much easier for them
to re-build the model and add more constraints to it in order to
reduce the number of solutions. Another expressed concerns
that users might not have sufficient RAM to process these
large problems. As a result, the participants only did the task
with filters as requested by them. One suggested that it would

be easier for the users if we can filter based on the status of
a specific intention. Finally, all of the experts agreed that the
filters saved them time and effort. These results are far from
conclusive in answering RQ2 and RQ3, but it has strengthened
our hypothesis that users will find filters useful (i.e., RQ2).
We need to make significant improvements to help users
select appropriate filters. For RQ3, we were unable to measure
the times it would take experts to select a state without the
filters because they all refused to engage in this process. This
strengthens our belief that filters do reduce interpretation time
and calls into question whether it is ethical to burden subjects
with this task in a controlled experiment.

V. RELATED WORK

We are not the first to look at optimizing goal model analysis
and results. This work builds on the prior goal model analysis
work of Giorgini and collaborators [14][15] and extends the
Evolving Intentions framework [3][10]. Our initial set of
solution reduction filters was loosely based on the work of
Franch et al. [12]. They created metrics over goal models and
hoped to create additional metrics to assist the needs of goal
model analysis.

Matthew et al. investigated exploiting the “key” decisions
within goal models to improve the efficiency of propagation-
based analysis results for very large goal models [16]. As
discussed in Section IV, one of our experts recommended
applying filters based on the status of specific intentions.
Future work could incorporate the idea of “key” decisions,
as in the work of Matthew et al.. Nyugen et al. proposed
finding incremental solutions in goal model analysis based

6



on changes in intentions and past results [17]. Although our
domain reduction filters refine the CSP, they do not result from
any changes in the intentions.

Others have investigated preferences in goal models.
Liaskos et al. allowed users to indicate preferences between
mandatory and optional goals, giving priorities to some
goals [18]. By indicating preferences, their work assisted
analysis algorithms to efficiently search for solutions. Jureta et
al. also considered preferences in goal models, by describing
systems-to-be in terms of candidate solutions and optional
requirements to be used as criteria for comparison in anal-
ysis [19]. Some may view our work as allowing the user to
state preferences of evidence pairs in analysis results.

The concept of filters was also used in prior work in the
domain specific modelling literature. Zarrin et al. used filter,
together with map and reduce, as lists of operations within a
function to specify domain specific languages [20]. Melnik et
al. defined a similar concept in order to use semantics to guide
the implementation for particular schema definition languages
and mapping languages for model operators (e.g., Compose,
Extract and Merge) [21]. Our work differs in that we are not
applying these filters directly to the structure of the model, but
filtering possible evaluations of the model.

VI. CONCLUSION & FUTURE WORK

In this paper, we introduced using filters to reduce the state
space of our Explore Possible Next States analysis, improving
users ability to create their own simulation results. Using the
motivating example of a student desiring to be accepted into
graduate school, we described filters for domain and solution
reduction, and our implementation in BloomingLeaf3. We
validate the effectiveness of our filters by measuring changes
in the computation time and the number of returned states
across a variety of models. Finally, we interviewed experts in
order to gain insights into how we can improve our analysis.

Based on our interviews with experts, we propose the
following future work. We will investigate using stakeholders
stated or implicit preferences, over their goal models, for the
purpose of creating context dependent filters and guiding users
in selecting the most appropriate filters. As part of our Next
State analysis, we will explore allowing users to update the
evidence pair assignments for each intention in the model and
using these new values to prune the solution space. Finally,
future work will provide additional empirical validation with
goal model users, rather than experts.

VII. ACKNOWLEDGEMENT

We thank the members of the Software Engineering group
at the University of Toronto for their assistance.

3A beta version of the filters extension to BloomingLeaf is available at:
www.cs.utoronto.ca/∼boyue/dev/allPathAnalysis/leaf-ui/.

REFERENCES

[1] J. Horkoff, T. Li, F.-L. Li, M. Salnitri, E. Cardoso, P. Giorgini,
J. Mylopoulos, and J. Pimentel, “Taking goal models downstream: A
systematic roadmap,” in Proceedings of the IEEE 8th International
Conference on Research Challenges in Information Science (RCIS’14),
May 2014, pp. 1–12.

[2] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja, M. Sal-
nitri, J. Mylopoulos, and P. Giorgini, “Goal-Oriented Requirements
Engineering: A Systematic Literature Map,” in Proc. of RE’16, 2016,
pp. 106–115.

[3] A. M. Grubb and M. Chechik, “Looking into the Crystal Ball: Require-
ments Evolution over Time,” in Proc. of RE’16, 2016.

[4] ——, “BloomingLeaf: A Formal Tool for Requirements Evolution over
Time,” in Proc. of RE’18: Posters & Tool Demos, 2018, pp. 490–491.

[5] B. C. Hu, A. M. Grubb, and M. Chechik, “Exploring Next States and
Alternative Paths in Goal Model Analysis,” Review of Undergraduate
Computer Science, University of Toronto, 2019, forthcoming.

[6] B. Schwartz, The Paradox of Choice: Why More Is Less. Harper
Collins, 2003. [Online]. Available: https://books.google.com/books?id=
g422yyua-P8C

[7] S. Iyengar, The Art of Choosing. Little, Brown Book Group, 2010.
[8] X. Franch, “A Method for the Definition of Metrics over i* Models,” in

Proc. of CAiSE’09, 2009, pp. 201–215.
[9] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Reason-

ing with Goal Models,” in Proc. of ER’02, 2002, pp. 167–181.
[10] A. M. Grubb, “Modeling and analyzing the evolution of requirement

over time using goal models,” Ph.D. dissertation, University of Toronto,
2019.

[11] E. M. Clarke, W. Klieber, M. Novacek, and P. Zuliani, “Model Checking
and the State Explosion Problem,” in Tools for Practical Software
Verification, ser. Lecture Notes in Computer Science, B. Meyer and
M. Nordio, Eds. Springer Berlin Heidelberg, 2012, vol. 7682, pp.
1–30.

[12] X. Franch, L. López, C. Cares, and D. Colomer, “The i* Framework
for Goal-Oriented Modeling,” in Domain-Specific Conceptual Model-
ing: Concepts, Methods and Tools, D. Karagiannis, H. C. Mayr, and
J. Mylopoulos, Eds. Springer International Publishing, 2016, pp. 485–
506.

[13] R. Salay, M. Chechik, J. Horkoff, and A. Di Sandro, “Managing Require-
ments Uncertainty with Partial Models,” J. Requirements Engineering,
vol. 18, no. 2, pp. 107–128, Jun 2013.

[14] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Formal
Reasoning Techniques for Goal Models,” J. on Data Semantics, vol. 1,
pp. 1–20, 2003.

[15] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and Minimum-
Cost Satisfiability for Goal Models,” in Proc. of CaiSE’04, 2004, pp.
20–35.

[16] G. Mathew, T. Menzies, N. Ernst, and J. Klein, “Shorter reasoning about
larger requirements models,” in Proc. of RE’17, 2017.

[17] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Model-
ing and Reasoning on Requirements Evolution with Constrained Goal
Models,” in Proc. of SEFM’17, 2017, pp. 70–86.

[18] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Repre-
senting and Reasoning about Preferences in Requirements Engineering,”
Requirement Engineering, vol. 16, no. 3, pp. 227–249, Aug 2011.

[19] I. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne: Towards
a New Generation of Requirements Modeling Languages with Goals,
Preferences, and Inconsistency Handling,” in Proc. of RE’10, 2010, pp.
115–124.

[20] B. Zarrin and H. Baumeister, “An integrated framework to specify
domain-specific modeling languages,” Proceedings of 6th International
Conference on Model-Driven Engineering and Software Development,
pp. 83–94, 2018.

[21] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm, “Supporting
executable mappings in model management,” SIGMOD, pp. 167–168,
2005.

7


