
Towards a General Solution for Layout of Visual
Goal Models with Actors

Yilin Lucy Wang, Alicia M. Grubb
Department of Computer Science

Smith College, Northampton, MA, USA
{lwang, amgrubb}@smith.edu

Abstract—Goal models help stakeholders make trade-off de-
cisions in the early stages of project development. While these
approaches have significant analysis capabilities, they have yet to
see broad industrial adoption, with the construction of scalable,
realistic goal models acting as a significant barrier. Over the
last decade, researchers have used force-directed algorithms,
specifically GraphViz, to layout goal models and have called
for improved layout algorithms to better accommodate the
unique challenges presented by actor-based models. We extend
a force-directed algorithm to include goal model heuristics, and
independently arrived at a domain specific version of a generic
layout algorithm for undirected compound graphs. As initial
validation of the effectiveness and scalability of our algorithm, we
implement our approach in BloomingLeaf, a goal model analysis
tool. Initial results are promising; yet, further collaboration and
validation across the various goal modeling approaches (e.g.,
GRL, iStar, Tropos) is required before we can recommend our
approach to be adopted in tooling. This paper presents early
results and lays a foundation for discussion within our GORE
community.

I. INTRODUCTION

Goal-Oriented Requirements Engineering (GORE) helps
stakeholders elicit and specify requirements in the early-phases
of a project. For example, stakeholders may model system
requirements and the intentions of their users. GORE frame-
works also provide powerful analysis capabilities to solve
problems facing stakeholders, and connect their models with
downstream development activities [1], [2], [3]. Most notably,
stakeholders can ask trade-off questions of their models and
make project decisions; however, GORE analysis techniques
are not used in industry because of the scalability issues with
the modeling (i.e., the actual creation and understanding of
models) [4], [5]. We aim to support stakeholders’ ability to
create large realistic goal models.

In this paper, we explore and describe the problem of auto-
matic layout of actor-based goal models (AGMs). We define
actor-based GORE languages as those that have the construct
of an actor that subsumes intentionality where both the actor
and their intentions are presented in the same visualization.
Tropos, GRL, and i* (iStar) are actor-based. The KAOS
language does not group intentions within actor boundaries;
therefore, standard layout algorithms designed for trees can be
used [6]. Similarly, other RE notations that describe processes
(e.g., BPMN [7] and UCM [8]) can layout models using a
grid.

Some actor-based goal modeling tools implement force-
directed algorithms (see Sect. II), while others continue to call
for automatic layout algorithms in their future work [9], [10].
The presence of actors, as containers for intentions, limits
the effectiveness of standard force-directed algorithms [11].
Creating appropriate algorithms for layout is essential to
the application of merging goal models, generating models
from natural language requirements, and creating tooling and
visualizations to allow for industrial adoption and model
management [9], [12].

The implications of layout decisions have already been
studied in the literature. Laue and Storch noted problems
associated with misleading layouts when validating goal model
syntax [13]. Santos et al. investigated the effects of bad
layouts on iStar models, and found no significant difference
in understanding and reviewing tasks, for small models (i.e., 2
actors and 20 intentions) [14]. They argued that the negative
effects of a bad layout escalate as the model size increases,
reinforcing the scalability issues described in prior work.

In this paper, we present FLAAG, an automated Force-
directed Layout Algorithm for Actor-based Goal models. We
define a set of heuristics to evaluate FLAAG and compare it
to related work. We discuss three research questions:

RQ1 How does FLAAG compare with prior automatic-layout
algorithms?

RQ2 To what extent does FLAAG accommodate goal model
syntax and semantics?

RQ3 To what extent does FLAAG scale to large realistic
models?

As this paper documents our ongoing research, we present pre-
liminary results for these research questions and add additional
questions that arose during validation (see Sect. V).

The remainder of this paper is organized as follows. Sect. II
provides background of the current state of the art in automatic
layout of actor-based goal models. Sect. III describes our
evaluation criteria and introduces our approach, while Sect. IV
presents FLAAG in detail. Sect. V discusses our initial eval-
uation and future roadmap for collaboration.

II. BACKGROUND

In this section, we introduce force-directed layout algo-
rithms and their application within the GORE community.



TABLE I: Actor-based Goal Model Layout Heuristics

Each row lists a heuristic and which algorithm satisfies (Y-Yes / N-No / P-Partial) the heuristic, where, FDA is a generic force-
directed algorithm; UCG is the undirected compound graph algorithm; and FLAAG is the actor-based goal model algorithm
described in this paper. Heuristics denoted with a † were adapted from [14].

Heuristics FDA UCG FLAAG
H1 Evenly distribute elements within the model. Y Y Y
H2 Have minimal space between elements. Y Y Y
H3 Avoid intersecting/overlapping links with other links† N N P
H4 Avoid or minimize overlapping boundaries of Actors where possible† N Y Y
H5 Limit the number of links that cross over actors. N N P
H6 Language specific hierarchical elements (e.g., tasks lower than goals). N N Y
H7 Use a consistent direction for the goal decomposition hierarchy† N N Y
H8 Decomposition relationships are closer together. N N Y
H9 Decomposition children are below their parents. N N Y
H10 Avoid intersecting/overlapping links with elements’ text† Y Y P
H11 All intentions that belong to an actor, must be placed inside the actor boundary† N Y Y
H12 Keep elements horizontal. Do not tilt or twist them† Y Y Y
H13 Keep links identifiers outside the boundaries of actors to improve readability† N N Y
H14 Use circles for actors’ boundaries unless other shapes improve readability† N Y Y
H15 Don’t extend the text of the name of the element beyond the element’s border† N N Y

A. Force-directed Algorithms (FDAs)

Force-directed algorithms (FDAs) layout graphs of nodes
and edges, by distributing nodes in models evenly in the
entire space [15]. While they vary in complexity for graphs
of different shapes [16], these algorithms generally work by
exerting repulsions between all nodes in combination with
exerting attractions between nodes with links, without bending
any of the links in the model [11].

GraphViz (http://graphviz.org) is an online open source li-
brary that implements customizable FDAs with layout options
(i.e., dot, neato, fdp, sfdp, twopi and circo). For example, fdp
and sfdp implements the FDA on different sized models. The
dot option works best in drawing hierarchical directed graphs,
whereas neato uses a spring model and distributes the nodes
by minimizing the overall energy of the system.

B. Automatic Layout within Actor-based Goal Models

FDAs, specifically GraphViz, have been exclusively used in
developing tooling for validation of goal modeling approaches.
Here, we describe goal modeling tools and their approach
to automatic layout based on documented details. OpenOME
is an early tool for modeling iStar [17]. OpenOME can
layout basic models using dot in GraphViz, meaning the
models appear to be hierarchical based on the direction of
the links. REDEPEND-REACT, an architecture analysis tool
that includes iStar elements, creates models using a tree-
form hierarchy [18]. jUCMNav is a well developed tool for
GRL models and Use Case diagrams. It uses GraphViz to
complete auto-layout features, but to the best of our knowledge
the feature is limited and only supports simple models [8],
[19]. MUSER is a modeling tool by Li et al. for security
requirements analysis for socio-technical systems using iStar
and Techne [20]. MUSER inherits similar layout features
from OmniGraffle, the proprietary tool it extends. To improve
the layout within MUSER, Li and collaborators completed

initial work to customize an FDA for laying out iStar SD
models [21], [22]. Finally, several text-based languages for
goal models exist. For example, iStarJSON for iStar has a
custom tool that uses GraphViz [23], and TGRL for GRL uses
jUCMNav (discussed above) for visual layout [24]. FDAs have
only provided limited support for laying out goal models; thus,
we propose a new algorithm to improve model layouts.

III. PROBLEM & APPROACH

In this section, we define our evaluation criteria and demon-
strate the need for FLAAG.

A. Evaluation Criteria: Layout Heuristics

In this paper, we evaluate actor-based goal model layouts
against the list of heuristics in Table I. Using the guidelines
provided by Santos et al. [14], we selected all heuristics related
to visual layout (denoted by † in Table I) and ignored all rules
associated with wellformedness and completeness. We propose
six additional heuristics based on our experience with tool
development [25]. While this list may be incomplete, it as a
first attempt to evaluate the effectiveness of three algorithms.

B. Limitations of FDAs for Actor-based Goal Models

As discussed in Sect. II, FDAs (i.e., GraphViz) are in-
sufficient for the task of laying out goal models due to the
presence of actors. As you can see from the FDA column
in Table I, the force-directed algorithm described in Sect. II
does not satisfy our needs. It allows for the even distribution
of intentions and relationships (i.e., H1, H2) and separations
of links and text (e.g., H10, H12), but does not allow for
the strict grouping of elements by actors. Some GORE tools
have modified a generic FDA (e.g., jUCMNav and MUSER),
to allow specialized positioning by node type, which would
satisfy H6 and H9 (see Table I), as well as have additional post
algorithm procedures to improve the visual appeal, satisfying
H11 and H13. FDAs do not satisfy all heuristics in Table I



and are insufficient for layout of both actors and intentions
because they only handle a single level of abstraction.

C. Treating Actors as Containers

Our initial approach was to consider force-directed algo-
rithms at both the actor-level and the intention level of the
model. For example, consider the iStar toy-example illustrated
in Fig. 1(i), which contains actors Mike, Student, and Travel
Agent. Student depends on Travel Agent to satisfy the goal
Trip Bundle Booked. This way we would apply a force-directed
algorithm on the intentions in Student and Travel Agent, then
again to the actors, but this does not enforce that Student and
Travel Agent be adjacent, or that Bundle Booked be adjacent
to Trip Bundle Booked.

In the next section, we present FLAAG. We independently
arrived at this algorithm; yet, detailed comparisons with related
work revealed that our algorithm can be considered a domain
specific instantiation of a generic algorithm for undirected
compound graphs (UCG) [27]. We begin by comparing the
premises and assumptions of the UCG algorithm, and its
ability to satisfy our heuristics, which motivate our domain
specific version.

Dogrusoz et al. undirected compound graph (UCG) algo-
rithm, which builds on the traditional force-directed algorithm,
is able to handle arbitrary levels of nesting and non-uniform
node sizes, as well as graph edges that span multiple levels
of nesting and links that connect to non-leaf nodes [27]. The
UCG algorithm works by creating a gravity force at the center
of each level of the nested graph to pull elements from the
same level of the graph together. Nodes only pull and repel
other nodes on the same nesting level of the graph. The
bounding boxes on some levels of graph are elastic, allowing
them to change size along with changes in the shape of the
graph. Intergraph edges are treated specially, where part of the
edge inside the bounding box for a given nesting is assigned
a constant force so that nodes connected to the box will be
pulled to the boundary. The remaining links are represented
as regular springs.

The layout of actor-based goal models is improved with
each of the capabilities of the UCG algorithm. For our purpose,
the UCG algorithm can be simplified because all goal models
can be represented with only one level of nesting. For example,
Fig. 1(ii) illustrates an abstracted undirected version of our toy
example. a, g, and i were actors, but in this view a, g, h and i
are at the same level. Each intention not part of an actor (e.g.,
dependums in iStar) is place inside an invisible actor container
for our algorithm.

Furthermore, we can write a transformation function be-
tween the syntax of a goal model and the syntax of a com-
pound graph. An actor-based goal model is a tuple 〈A,G,R〉,
where A is a set of actors, G is a set of intention nodes
and R is a set of goal relations over G [28]. A compound
graph is a tuple 〈V ,E,F 〉, where V is a set of nodes, E
is a set of adjacency edges, and F is a set of inclusion
edges denoting which nodes belong to another node (i.e.,
are members of a sub-graph) [27]. In this transformation,

the set V becomes the union of A and G, plus the in-
visible actors created for independent intentions. The set
E is mapped to R, and F is the mapping between actors
A and intentions G. Returning to Fig. 1, the compound
graph for our toy example is: V = {a,b,c,d,e,f,g,h,i}, E =
{{a,g}, {b,c}, {b,d}, {d,e}, {e,f}}, F = {gb, gc, gd, he, if}.

Although we can represent goal models as compound
graphs, the algorithm presented by Dogrusoz et al. on its own
does not sufficiently satisfy the heuristics listed in Table I
(see UCG column), where only about half of the heuristics
are assigned a Y. Thus, further customization is required. In
the next section, we give the details of FLAAG, which does
satisfy our heuristics (see FLAAG column in Table I).

IV. FLAAG: ALGORITHM DESCRIPTION

FLAAG is presented in Algo. 1 on Lines 1–13. For space
considerations, full details are not provided for each helper
function1. Algo. 1 takes as input a goal model M, three
constants, as well as two optional inputs containing initial
layout information and the maximum number of iterations (i.e.,
timeout). Algo. 1 consists of initialization (on Lines 1–2), a
main loop (Lines 3–8), and four visualization functions that
convert the resulting layout back to a format appropriate for
rendering (Lines 9–13). The INITIALIZATION function assigns
initial coordinates to each element either sequentially or using
initLay. The main loop (see Lines 3–8 in Algo. 1) creates the
relative positioning of each element in the model by iteratively
calculating the forces between each element and updating the
displacement accordingly (see ADJUST function on Lines 15–
30). The main loop completes when CHECKCOND determines
whether the intermediate product satisfies H2–H5 and H8–
H9 (see Table I), or if the maximum number of iterations
maxItr has been reached. At this point in Algo. 1, the graph
is rendered. SETCOORDINATEPOSITIVE (see Line 9) uses an
off-set to shift the coordinates of each element to become rel-
ative to (0, 0). Next, GETSIZEOFACTOR calculates the width
and length of each actor boundary, and CALCULATEACTOR-
POSWITHREC ensures that actor boundaries do not overlap
given the updates to the boundary sizes in GETSIZEOFACTOR.
Finally, MOVENODESTOABSPOS calculates the final position
of each node within each actor.
ADJUST Function. ADJUST changes the position of curNode
relative to the elements in the model by calculating the
attraction and repulsion forces. The function takes as input, the
model (represented by the node and actor set), the current node
(curNode), and whether curNode is an actor (curIsActor), as
well as the user specified constants CA,CN , and CM . CA and
CN are used and described in the ATTRACTION function (see
below). CM is a factor in calculating the distance an element
is moved on each call to ADJUST (see Lines 29–30). First,
ADJUST constructs the correct node set for later calculation
(see Lines 15–21 in Algo. 1). If curNode is an actor, then
elemSet contains all the actors (on Line 15), otherwise, it
contains the remainder of the nodes within the same actor

1https://doi.org/10.35482/csc.001.2020



(i) iStar Goal Model of Toy Example (Adapted from [26]) (ii) Component Spring Model of Toy Example

Fig. 1: Goal Model and Component Spring Model of Toy Example

Fig. 2: REPULSION and ATTRACTION on Toy Example

as curNode. Next, using the for loop (Lines 22–27), ADJUST
calculates the forces on each node on curNode by calling
the REPULSION and ATTRACTION functions on Line 24 and
Line 26, respectively. Finally, ADJUST updates the position
of curNode on Lines 28–30 based on the forces from each
element in the model.

One thing that makes FLAAG unique from the generic
UCG algorithm, is that ADJUST (see Line 28) allows node
types (e.g., goals, tasks) to have individualize gravity values
to indicate the hierarchical level of the node in the model.
REPULSION Function. The REPULSION function (see
Lines 31–38 in Algo. 1) calculates the repulsion between any
two given nodes (i.e., node1 and node2). All elements in the
graph have repulsion forces with each other. REPULSION uses
Pythagoras’ theorem to calculate the distance between two
nodes (D, see Line 32). The closer two elements are in space,
the greater the repulsion between the elements. We take the
repulsion formula from [11], where the repulsion is −CN

2/D,
where CN is the same constant used in the ATTRACTION
function (below). The x and y components of the force are
calculated and returned according to the relative position of
the nodes (see Lines 34–38).

Consider nodes b, c, and d in the toy example in Fig. 1(ii).
Initially, the nodes are distributed as shown in Fig. 2 (i).
REPULSION forces each pair of nodes away from each other,
and node b, c, and d are redistributed as shown in Fig. 2 (ii).
ATTRACTION Function. Similarly, the ATTRACTION func-
tion calculates the attraction between any two given nodes (i.e.,
node1 and node2). The function takes n1IsActor indicating if
node1 is an actor, and two positive reals as constants: CN

and CA representing the force between connected nodes and
actors, respectively. An attraction force only exists between
two nodes if there is a link between them. If node1 is an
actor (i.e., n1Actor = true) then the calculated attraction is the

number of links between the actor and node2 times D2/CA;
otherwise, the attraction between two nodes is simply D2/CN .
D is the distance between nodes (see Line 40). Again, the
direction of the force is calculated and returned according to
the relative position of the nodes (see Lines 47–51).

Recall nodes b, c, and d from the toy example in Fig. 1(ii).
Prior to calling ATTRACTION, the nodes have been separated
by the REPULSION function as shown in Fig. 2 (ii). For each
pair of connected nodes {b,c} and {b,d}, ATTRACTION exerts
a positive force along the link. In this way, the link between c
and b will be shortened, similarly for the link between b and
d, resulting in the nodes being pulled together as in Fig. 2 (iii).

Similarly, prior to calling ATTRACTION actors h and i are
distributed as in Fig. 2 (iv). ATTRACTION counts the number
of links that two actors have between the nodes that reside
in them. In this case, there is one link between node e and
node f, resulting in an attractive force along the line between
h and i, which will bring actor h and actor i closer as shown
in Fig. 2 (v).
CHECKCOND Function. CHECKCOND (see Lines 52–57)
takes as input the model, current iteration (curCtr) and max-
imum number of iteration (expectedIterations). As mentioned
above, CHECKCOND acts as a stop condition for the main
loop in Algo. 1. If the maximum number of iterations has
not been reached (Line 53), then using CHECKCROSSOVER,
CHECKDECOMPODISTANCE and MINIMALSPACE, CHECK-
COND determines whether the model has sufficiently con-
verged and satisfies H2–H5 and H8–H9 (see Table I).

V. DISCUSSION

In this section, we return to our research questions RQ1–
RQ3, introduced in Sect. I. To further explore our research
questions, we implemented FLAAG, described as Algo. 1
in Sect. IV, in BloomingLeaf, a GORE modeling and analysis
tool. The tool supports the Tropos model syntax [29].

A. Initial Evaluation

First, we address RQ1: How does our algorithm compare
with prior automatic-layout algorithms? We rated FLAAG
against our heuristics in the rightmost column of Table I.
We found that our implementation of some heuristics can
be improved and we have not satisfied all our heuristics;
nonetheless, we believe FLAAG is more suitable to the task
of laying out actor-based goal models than the undirected
compound graph or generic force-directed algorithms.



Algorithm 1 FLAAG: Actor-based Goal Model Layout
Require:

Goal Model M = 〈A,G,R〉 . See Sect. III.
Constants CA,CN ,CM . Constants for Actors, Nodes, and Moves.
Maximum Layout Iterations maxItr . Optional Timeout
Initial Layout Information initLay . Optional coord. for elements in M .

Ensure:
Final Graph Layout Information

1: (actorSet, nodeSet) ← INITIALIZATION(M , initLay)
2: curCtr = 0 . Initializes iteration counter.
3: while CHECKCOND(curCtr, actorSet, nodeSet, maxItr) do
4: for node ∈ nodeSet do
5: ADJUST(node, actorSet, nodeSet,False,CA,CN ,CM )
6: for actor ∈ actorSet do
7: ADJUST(actor, actorSet, nodeSet, True,CA,CN ,CM )
8: curCtr++
9: SETCOORDINATEPOSITIVE(nodeSet)

10: GETSIZEOFACTOR(actorSet, nodeSet)
11: CALCULATEACTORPOSWITHREC(actorSet)
12: MOVENODESTOABSPOS(actorSet, nodeSet)
13: return (actorSet, nodeSet)

14: function ADJUST(curNode, nodeSet, actorSet, curIsActor,CA,CN ,CM )
15: elemSet ← actorSet
16: if ¬curIsActor then . curNode is an actor.
17: nodeInA = {}
18: for node ∈ nodeSet do
19: if node.parent = curNode.parent ∧ node.id 6= curNode.id then
20: nodeInA.add(node)
21: elemSet ← nodeInA
22: for node ∈ elemSet do
23: if curNode.name 6= node.name then
24: rForces ← REPULSION(curNode, node,CN )
25: UPDATEFORCES(curNode, rForces)
26: aForces ← ATTRACTION(curNode, node, isActor,CN ,CA)
27: UPDATEFORCES(curNode, aForces)
28: curNode.forceY = curNode.forceY + curNode.gravity
29: curNode.x = curNode.x + curNode.forceX ∗ CM

30: curNode.y = curNode.y + curNode.forceY ∗ CM

31: function REPULSION(node1, node2,CN )
32: D ←

√
(node1.x− node2.x)2 + (node1.y − node2.y)2

33: calcRep ← −CN
2/D

34: forceX ← cos ∗ calcRep
35: forceY ← sin ∗ calcRep
36: if node2.nodeX < node1.nodeX then forceX = −forceX
37: if node2.nodeY < node1.nodeY then forceY = −forceY
38: return [forceX, forceY]

39: function ATTRACTION(node1, node2, n1Actor, CN , CA)
40: D ←

√
(node1.x− node2.x)2 + (node1.y − node2.y)2

41: if n1Actor then . node1 is an actor.
42: calcAtt ← (node1.linkCount(node2)) ∗D2/CA

43: else if node1.isConnectedTo(node2) then
44: calcAtt ← D2/CN

45: else
46: calcAtt ← 0
47: forceX ← cos ∗ attraction
48: forceY ← sin ∗ attraction
49: if node2.nodeX < node1.nodeX then forceX = −forceX
50: if node2.nodeY < node1.nodeY then forceY = −forceY
51: return [forceX, forceY]

52: function CHECKCOND(curCtr, actorSet, nodeSet, expectedIterations)
53: if expectedIterations ≤ curCtr then return false
54: else if ¬CHECKCROSSOVER(actorSet, nodeSet) then return true
55: else if ¬CHECKDECOMPODIST(actorSet, nodeSet) then return true
56: else if ¬MINIMALSPACE(actorSet, nodeSet) then return true
57: return false

TABLE II: Model Validation Data

Name & Source Actors Nodes Links Time Rating
(ms)

Tolls System [14] 2 21 24 126 A
Goods Aquisition [14] 2 17 19 113 A
GRAD [30] 2 14 18 145 A
Scheduler [31] 3 18 20 104 B
Spadina Plan [32] 5 43 55 98 C
Spadina Opp [32] 6 38 35 208 B
Bike Lanes Full [32] 0 30 37 92 A
Vendor/Service [33] 3 16 19 180 B
Media Shop [29] 1 23 27 106 B
Toyota [28] 0 30 39 120 C

Next, we consider RQ2: To what extent does our layout
algorithm accommodate goal model syntax and semantics? We
took models from a variety of GORE papers in the literature,
and recreated them in Tropos using BloomingLeaf. Table II
lists the name and source for each model we used in our initial
evaluation. When creating models, we did not give elements
an initial position to avoid biasing Algo. 1. We asked two
students (i.e., testers) trained in GORE to assign a letter grade
to the layout for each model. To avoid biasing our testers, we
told them to first place the layouts into best-to-worst buckets
and give rationale for their bucketing. We then combined their
grades (see Rating column in Table II). Models rated as B
or C were reported to not support stakeholder understanding.
On the whole, testers reported that actors and intentions were
placed too far apart, and that some links overlapped decreasing
readability. This was a greater issue for larger models.

Finally, we evaluate RQ3: To what extent does our layout
algorithm scale to large realistic models? For each model listed
in Table II, we recorded run-time data using a 1.1 GHz Intel
Core M (Dual-Core) with 8G of RAM. BloomingLeaf pro-
duced layouts for each model within 210 ms (see Time column
in Table II). This is consistent with other analysis operations
in BloomingLeaf. We conclude that our implementation of
FLAAG is scalable for medium-sized models.

Our ongoing work is looking at improving the spacing
between intentions and actors. Overall, these results appear to
be promising, but do not provide conclusive evidence and have
obvious threats to validity (e.g., experimenter expectancies).
Instead, they inform our plans for further validation and
experimentation. Future work is required to test our approach
on large models with more than fifty elements.

B. Validation with an Empirical Study

These are early results requiring discussion of our chosen
heuristics among the GORE community. To validate this work,
we will complete a full empirical evaluation with GORE
experts and stakeholders and then triangulate results among
the actor-based languages (i.e., Tropos, GRL, iStar) and tools
(e.g., jUCMNav, OpenOME, MUSER, and CreativeLeaf).

In one or more studies, we could do a direct comparison of
force-directed algorithms (e.g., GraphViz) with our algorithm
for reviewing and updating tasks, tracking how often and
in what ways subjects rearrange the model elements. By



developing off of the tracking work in [34], we can determine
to what extent modelers need to rearrange elements after
layout happens automatically. This leads to our interest in five
additional research questions (RQ6-8 were adapted from [12]):
RQ4 Under what circumstances is automatic layout better

than manual layout?
RQ5 Which algorithm (e.g., FDA, UCG, FLAAG) produces

the best layout for a given goal model?
RQ6 To what extent do modelers gain value in manually

laying out goal models?
RQ7 Can participants gain similar benefits to creating models

from reviewing and correcting models?
RQ8 To what extent is a visual representation beneficial?
Additional empirical studies will in-turn validate the complete-
ness of the heuristics in Table I.

C. Summary and Future Work

In this paper, we presented the problem of automatic layout
for actor-based goal models. We introduced a set of heuristics
to benchmark automatic layout efforts and showed that prior
implementations were insufficient for laying out models with
actors. We proposed FLAAG, our domain-specific variant of
a generic algorithm for undirected compound graphs, and
demonstrated the effectiveness of FLAAG in satisfying the
heuristics. We also presented evidence for the scalability, in
terms of run-times, of our implementation.

Our aim in this early contribution is to gain feedback
from the RE community and foster collaborations with other
GORE researchers to complete extensive validation of our
algorithm across the multiple actor-based languages and tools
(see Sect. V-B for details). In addition to implementation
improvements and further validation, we will extend our
algorithm to allow for expansion and contraction of actor
boundaries, as well as model slicing (i.e., split a large model
into fragments to facilitate rendering and presentation [14]).

REFERENCES

[1] J. Horkoff, T. Li, F.-L. Li, M. Salnitri, E. Cardoso, P. Giorgini,
J. Mylopoulos, and J. Pimentel, “Taking Goal Models Downstream: A
Systematic Roadmap,” in Proc. of RCIS’14, May 2014, pp. 1–12.

[2] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja, M. Sal-
nitri, J. Mylopoulos, and P. Giorgini, “Goal-Oriented Requirements
Engineering: A Systematic Literature Map,” in Proc. of RE’16, 2016,
pp. 106–115.

[3] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja,
M. Salnitri, L. Piras, J. Mylopoulos, and P. Giorgini, “Goal-Oriented
Requirements Engineering: An Extended Systematic Mapping Study,”
Requirements Engineering, vol. 24, no. 2, pp. 133–160, Jun 2019.

[4] H. Estrada, A. M. Rebollar, O. Pastor, and J. Mylopoulos, “An Empirical
Evaluation of the i* Framework in a Model-Based Software Generation
Environment,” in Proc. of CAiSE’06, 2006, pp. 513–527.

[5] A. Mavin, P. Wilkinson, S. Teufl, H. Femmer, J. Eckhardt, and J. Mund,
“Does Goal-Oriented Requirements Engineering Achieve Its Goal?” in
Proc. of RE’17, 2017, pp. 174–183.

[6] R. Matulevičius and P. Heymans, “Visually Effective Goal Models Using
KAOS,” in Proc. of ER’07, 2007, pp. 265–275.

[7] I. Kitzmann and C. Konig, “A Simple Algorithm for Automatic Layout
of BPMN Processes,” in Proc. of CEC’09, 2009.

[8] D. Amyot, A. Shamsaei, J. Kealey, E. Tremblay, A. Miga, G. Muss-
bacher, M. Alhaj, R. Tawhid, E. Braun, and N. Cartwright, “Towards
Advanced Goal Model Analysis with jUCMNav,” in Proc. of ER’12,
2012, pp. 201–210.

[9] J. Gillain, C. Burnay, I. Jureta, and S. Faulkner, “AnalyticGraph.com:
Toward Next Generation Requirements Modeling and Reasoning Tools,”
in Proc. of RE’16, 2016, pp. 341–346.

[10] A. M. Grubb and M. Chechik, “BloomingLeaf: A Formal Tool for
Requirements Evolution over Time,” in Proc. RE’18: Posters & Tool
Demos, 2018, pp. 490–491.

[11] S. G. Kobourov, “Force-directed Drawing Algorithms,” in Handbook of
Graph Drawing and Visualization, R. Tamassia, Ed. CRC Press, 2013.

[12] A. M. Grubb, “Reflection on Evolutionary Decision Making with Goal
Modeling via Empirical Studies,” in Proc. of RE’18, 2018, pp. 376–381.

[13] R. Laue and A. Storch, “A Flexible Approach for Validating i* Models,”
in Proc. of i* Workshop (iStar’11), 2011.

[14] M. Santos, C. Gralha, M. Goulao, J. Araújo, A. Moreira, and J. Cam-
beiro, “What is the Impact of Bad Layout in the Understandability of
Social Goal Models?” in Proc of RE’16, 2016, pp. 206–215.

[15] T. M. J. Fruchterman and E. M. Reingold, “Graph Drawing by Force-
Directed Placement,” Softw. Pract. Exper., vol. 21, no. 11, pp. 1129–
1164, 1991.

[16] J. Dı́az, J. Petit, and M. Serna, “A Survey of Graph Layout Problems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 313–356, 2002.

[17] J. Horkoff and E. Yu, “Interactive Goal Model Analysis For Early
Requirements Engineering,” Req. Eng., vol. 21, no. 1, pp. 29–61, 2016.

[18] G. Grau, X. Franch, and N. A. M. Maiden, “PRiM: An i*-based
Process Reengineering Method for Information Systems Specification,”
Inf. Softw. Technol., vol. 50, no. 1-2, pp. 76–100, 2008.

[19] i* wiki, “jucmnav,” http://istar.rwth-aachen.de/tiki-index.php?page=
jUCMNav, April 2013.

[20] T. Li, J. Horkoff, and J. Mylopoulos, “Holistic Security Requirements
Analysis for Socio-technical Systems,” Softw Syst Model, vol. 17, pp.
1253–1285, 2018.

[21] Y. Wang, T. Li, H. Zhang, J. Sun, Y. Ni, and C. Geng, “A Prototype
for Generating Meaningful Layout of iStar Models,” in Proc. of ER’18:
Workshops, 2018, pp. 49–53.

[22] H. Zhang, T. Li, and Y. Wang, “Design of an Empirical Study for
Evaluating an Automatic Layout Tool,” in Proc. of ER’18: Workshops,
2018, pp. 206–211.

[23] O. Franco-Bedoya, D. Ameller, D. Costal, and L. López, “iStarJSON:
A Lightweight Data-Format for i* Models,” in Proc. of i* Workshop
(iStar’16), 2016, pp. 37–42.

[24] V. Abdelzad, D. Amyot, S. A. Alwidian, and T. Lethbridge, “A Textual
Syntax with Tool Support for the Goal-Oriented Requirement Lan-
guage,” in Proc. of i* Workshop (iStar’15), 2015, pp. 61–66.

[25] T. Li, A. M. Grubb, and J. Horkoff, “Understanding challenges and
tradeoffs in istar tool development,” in Proc. of i* Workshop (iStar’16),
2016, pp. 49–54.

[26] F. Dalpiaz, X. Franch, and J. Horkoff, “iStar 2.0 Language Guide,”
arXiv:1605.07767, 2016.

[27] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir, “A Layout
Algorithm for Undirected Compound Graphs,” Information Sciences,
vol. 179, no. 7, pp. 980 – 994, 2009.

[28] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Formal
Reasoning Techniques for Goal Models,” Journal on Data Semantics,
vol. 1, pp. 1–20, 2003.

[29] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented Require-
ments Analysis and Reasoning in the Tropos Methodology,” Engineering
Applications of Artificial Intelligence, vol. 18, no. 2, pp. 159–171, 2005.

[30] B. C. Hu and A. M. Grubb, “Support for User Generated Evolutions of
Goal Models,” in Proc. of MiSE’19, 2019, pp. 1–7.

[31] R. Salay, M. Chechik, J. Horkoff, and A. D. Sandro, “Managing Re-
quirements Uncertainty with Partial Models,” Requirements Engineering,
vol. 18, no. 2, pp. 107–128, Jun. 2013.

[32] A. M. Grubb, “Evolving Intentions: Support for Modeling and Rea-
soning about Requirements that Change over Time,” Ph.D. dissertation,
University of Toronto, 2019.

[33] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and
E. Yu, “Evaluating Goal Models Within the Goal-Oriented Requirement
Language,” Int. J. of Intelligent Sys., vol. 25, no. 8, pp. 841–877, 2010.

[34] J. Horkoff, N. A. M. Maiden, and D. Asboth, “Creative Goal Modeling
for Innovative Requirements,” Information and Software Technology,
vol. 106, pp. 85 – 100, 2019.


